Okika Technologies Field Programmable Analog Array Introduction

Company Profile

• Name: Okika Technologies Corp.

July 3, 2013

- Founded:
- Founded By: William W. Staunton III
 Douglas D Moran
- Headquartered: Carlsbad, CA 92011
- Website: <u>www.okikatechnologies.com</u>
- Business Description:

Semiconductor Products, Design Services Fiscal Year: January – December

• Board Members: Chairman, CEO William W. Staunton III

Director, CTODouglas D. MoranDirectorJim DoranDirectorL.B. Day

• Veteran Owned Business

Okika Technologies

Field Programmable Analog Array Technology Overview

12/11/2020

DynAMxTM

- Dynamically Reconfigurable Analog Matrix
 - DynAMx[™] is an integrated array of analog functions that can be dynamically configured during system operation.
 - Different configurations enable DynAMx chips to perform a wide variety of analog functions.
 - The real power of the DynAMx is the ability to change the configuration, analog parameters, or even complete functionality *on-the-fly under software control.*

FPAA - the analog FPGA Equivalent

- The Okika programmable analog solution is equivalent to FPGA in many ways
 - Predefined silicon architecture
 - Programmable fabric
 - Soft function library
 - EDA tools that capture the design, allow parameter setting then create the configuration file and API that will be loaded to the programmable device
- Silicon Architecture & Programming Fabric
 - Configurable I/O, configurable analog blocks
 - Configuration is via CMOS switches:
 - Steering switches (routing)
 - Function switches (Op-amp structure)
 - Equivalent resistors (switched capacitors)
 - Switch state is saved a double-buffered memory equivalent SRAM

Silicon Architecture & Programmable Fabric

- Fundamentals
 - Configurable I/O analog, digital, continuous analog functions
 - Configurable analog Block (CAB) opamps, comparators, SAR & LUT
 - Programmable fabric SRAM, shadow SRAM and steering switches (actually individual FF's and CMOS switches)
 - Predisposition for simple download to, and configuration of, any single element, function or connection in the architecture
- Configurable Analog Modules (CAMs) combine CAB functions to create more complex systems.
 - Built-in library of CAMs creates an extremely flexible and easy to use analog design environment
- Tools and Software
 - Internal tools to support CAM development
 - EDA tools to support straight-forward, high level analog design schematic capture
 - Time domain simulation waveform input and waveform measurement
 - Instant download to silicon for "trail and error" design evaluation
 - Code generation tools configuration files and C source code for inclusion in MCU application

Okika's Dynamically Programmable FPAA Architecture

Okika's Dynamically Programmable FPAA Architecture

Input/Output Cells Structure

• Each I/O cell can be configured a number of ways

- Input or Output Modes
- In bypass mode
- A chopper amplifier
- A variable gain buffer
- A continuous time low pass filter
- As a single ended to differential converter
- Certain combinations of these modes

Input Configuration Diagram

Design Automation: DynAMx Design Lab Software

- Combined with Okika FPAA chips, DynAMx Design Lab software vastly simplifies the design process
 - •Design is captured in block diagram or scripting language
 - •Circuit parameters are set by simple forms or software API
 - •Built-in simulator is WYSIWYG accurate
 - •Revisions or dynamic changes are instantaneous
- Designers don't have to worry about:
 - •Offsets
 - On-chip Reference levels
 - Routing parasitics
 - Stability & Compensation
 - •Environmental effects (temp, supply voltage, etc).
- Enables designers to focus on the analog system design

TECHNOLOGIES

	Specify			
itart Here	Options Filter Type: Low Pass High Pass Band Pass Band Stop Pole and Zero Filter Topology: Automatic Type I Type II Opamp Chopping: Enabled Parameters Parameters Enabled Enabled Enabled Enabled	^		
Compture	Corner Frequency [IdH2]: 40 (40.0 realized) [8.00 To 400] Gain: 1 (1.00 realized) [0.0500 To 100] Quality Factor: 10 (10.0 realized) [0.0500 To 100]			
		~		

	Sp	ecify		
Start Here Capture	Options Filter Type: Low Pass High Pass Filter Topology: Otamatic Type I Opamp Chopping: Enabled Parameters Corner Frequency [kHz]: 40 Quality Factor: 10 0	Band Pass Band Stop Pole and Zero Type II (0.0 realized) [8.00 To 400] 1.00 realized] [0.0500 To 100] 10.0 realized) [0.0500 To 100]		
			\checkmark	
12/11/2020	peat	Evaluate	O O K I E C H N O I O C I I O C I I O I O I I O I O I I O I O I I O I O I O I I O I I O I O I I O I O I I O I O I I O I I O I I O I I O I O I I I O I I I O I I I I O I I I I I I I I I I	

DynAMx Design Lab

Filter Type: Filter Topology: Opamp Chopping:	0L @A	ow Pass lutomatic nabled	⊖ High Pa ⊖ Type I	ss ● Band Pas ○ Type II	as 🔿 Band Stop	O Pole and Zero
Parameters	the state of the s					
Corner Frequency [kHz]:	40		(40.0 realized)	[8.00 To 400]	
	Gain:	1		(1.00 realized)	[0.0500 To 100]	
0.00	ctor	10		(10.0 realized)	[0.0500 Te 100]	

Capture

- Built in analog functions are connected together.
- Example shows an Ultrasonic transceiver
- The parameters of each analog function are set in its dialog box

DynAMx Design Lab

- Simulate
 - DynAMx features a simulator allowing engineers to stimulate the circuit with inputs and verify the outputs are within spec.
 - Use a virtual scope probe for debugging.
- Validation
 - The Okika evaluation board allows engineers to quickly connect a DynAMx device to the real world.

DynAMx Filter Lab

- If you need a filter then Okika provides a special tool
 - Built in to DynAMx Design Lab
- Draw the frequency response you need (or enter as parameters in the table) and the tool will generate the filter to meet your requirements
- Choose the filter type
 - Low-pass, band-pass, high-pass, Butterworth, Bessel etc
- Or just set filter parameters (stop band attn, cut-off frequencies) and let the tool do the work!

DynAMx Design Lab CAM Design Library

Rich pre-built library

Complete list with specifications, datasheets, and examples are available within the DynAMx Design Lab software Help files. Download at <u>www.okikatechnologies.com</u>

WIRELESS SOLUTIONS

CAM Example

CAM Parameters Example: Biquadratic Filter

Instance Name: FilterBiquad1		okikaApex\FilterBiq	uad 1.0.2 (Biquadratic	: Filter)			
Clocks		*This is an inverting	filter.* See the transf	er function in the			Help
ClockA Clock0 (4000 kHz)	•	CAM Documentatio	n.				Documentat
					<u>⊕</u> 1		
							C Code
Options						~	
Filter Type:	Low Pass	⊖ High Pass	⊖ Band Pass	⊖ Band Stop	○ Pole and Zero		
Filter Topology:	Automatic	◯ Type I	⊖ Type II				
Input Sampling Phase:	Phase 1	⊖ Phase 2					
Polarity:	Inverting	Non-					
Opamp Chopping:	Enabled						
Parameters							
	40	(40.0 re	alized) [8.00 ⁻	To 400]			
Corner Frequency [kHz]:			alized) [0.100	To 100]			
Corner Frequency [kHz]: Gain:	1	(1.00 re	concoury concours				
Corner Frequency [kHz]: Gain: Quality Factor:	1	(1.00 re (0.707	realized) [0.060	0 To 70.0]			

●_{⊕1}-___^I●

CAM Source: OKIKA Technologies, Approved: Yes

CAM Example

CAM Parameters Example: Comparator

nstance Name: Comparator1	okikaApex\Comparator 1.1.1 (Comparator)		OK Cancel
llocks	(No notes)		Help
			Documentati
			C Code
Options		^	
Compare To: 🛛 🔿 Signal Groum	d 🔿 Dual Input 💿 Variable Reference		
Input Sampling: Phase 1 	O Phase 2		
Output Polarity: Non-invertee 	d 🔿 Inverted		
Output Synch: None 	O Phase 1 O Phase 2		
Parameters			
Reference Voltage: 1	(1.00 realized) [-3 to 3]		
,	(

CAM Source: OKIKA Technologies, Approved: Yes

CAM Example

CAM Parameters Example: Inverting Amplifier

AM Parameters			? ×
nstance Name: GainInv1	okikaApex\GainInv 1.0.1 (Inverting Gain Stage)		OK Cancel
ClockA Clock0 (4000 kHz)	(No notes)		Help
		6	C Code
Options		^	
Opamp Chopping: 🗌 Enabled			
Parameters		_	
Gain: 1.03 (1.03 re	alized) [0.01 to 100]		
		~	

Design Automation

Multi Chip and Multi CAB Support

Arbitrary number of chips can be connected and the tools will automatically configure all of them. Shown below: ultrasonic transceiver (FPAA1) with simulated delay and attenuation (FPAA2). Contact Okika Technologies for complete technical specifications.

Configuring and Reconfiguring Okika FPAA

- Static reprogramming (re-purposing) is fundament, but.....
- DYNAMIC, "on the fly" programmability is essential
 - Addresses the calibration, conditioning and fine tuning challenges of sensors and control applications in the field
 - Supports adaptive analog signal processing
- Okika's FPAA architecture
 - Allows complete "on the fly" dynamic programming while the device is operational – without interruption to the outputs
- Okika's DynAMx Design Lab software automates the configuration bitmap and C-code generation
 - Sophisticated software suite, automatically generates C-code for inclusion in the programming of embedded microcontroller applications

3 Methods to Configure Okika FPAA

• Static

- FPAA reads configuration from EEPROM at power up.
- Configuration bitmap and EEPROM files generated automatically by Okika software based on the designers schematic and CAM parameter settings.
- Dynamic with multiple Configuration Files
 - Multiple configuration files stored in MCU memory.
 - MCU loads whichever configuration is needed at the time.
 - Enables dynamic reload of configuration to change low level parameters (gain, etc) or to load a completely new design (change a transmitter to a receiver, switch between multiple sensor types, change a filter bank from low pass to high pass, etc).
- Dynamic Configuration with Okika API
 - Okika DynAMx Design Lab software automatically generates C source code and API
 - Code and API are integrated into embedded system controller MCU code
 - MCU calls API functions to change FPAA parameters (for example, SetFilterParam(Gain, CutOffFreq, QualityFactor)

The same tools and processes can be used for integration of FPAA IP into SoC designs.

Demonstration

Thank You

For more information, contact:

– Doug Moran, CTO

doug.moran@okikatechnologies.com

Or

– William Staunton, CEO

<u>bstaunton@okikatechnologies.com</u>

