Aquatic versus terrestrial crab skeletal support: morphology, mechanics, molting and scaling

TitleAquatic versus terrestrial crab skeletal support: morphology, mechanics, molting and scaling
Publication TypeJournal Article
Year of Publication2018
AuthorsTaylor J.RA
JournalJournal of Experimental Biology
Volume221
Date Published2018/11
Type of ArticleArticle
ISBN Number0022-0949
Accession NumberWOS:000449824800015
Keywordsblue-crab; Callinectes sapidus; callinectes-sapidus; Crustacea; differential; earthworm lumbricus-terrestris; Exoskeleton; Gecarcinus lateralis; ghost-crab; growth; hydrostatic skeleton; hydrostatic skeletons; jumping performance; land; Life Sciences & Biomedicine - Other Topics; Mechanical properties; ocypode-ceratophthalma; relative growth
Abstract

The transition from aquatic to terrestrial environments places significant mechanical challenges on skeletal support systems. Crabs have made this transition multiple times and are the largest arthropods to inhabit both environments. Furthermore, they alternate between rigid and hydrostatic skeletons, making them an interesting system to examine mechanical adaptations in skeletal support systems. I hypothesized that terrestrial crabs have modified morphology to enhance mechanical stiffness and that rigid and hydrostatic skeletons scale differently from each other, with stronger allometric relationships on land. Using the aquatic blue crab, Callinectes sapidus, and the terrestrial blackback land crab, Gecarcinus lateralis, I measured and compared body mass, merus morphology (dimensions, cuticle thickness and the second moment of area I) and mechanics (flexural stiffness ElI, elastic modulus E, critical stress and hydrostatic pressure) of rigid and hydrostatic stage crabs encompassing a range of sizes (C. sapidus: 1.5-133 g, N <= 24; G. lateralis: 22-70 g, N <= 15). The results revealed that rigid G. lateralis has similar morphology (limb length to diameter LID and cuticle thickness to limb diameter TID ratio) to C. sapidus, and the mechanics and most scaling relationships are the same. Hydrostatic land crabs differ from aquatic crabs by having different morphology (thinner cuticle), mechanics (greater intemal pressures) and scaling relationship (cuticle thickness). These results suggest that the rigid crab body plan is inherently overbuilt and sufficient to deal with the greater gravitational loading that occurs on land, while mechanical adaptations are important for hydrostatically supported crabs. Compared with other arthropods and hydrostatic animals, crabs possess distinct strategies for adapting mechanically to life on land.

DOI10.1242/jeb.185421
Short TitleJ. Exp. Biol.
Student Publication: 
No
sharknado