Coronavirus Information for the UC San Diego Community

Our leaders are working closely with federal and state officials to ensure your ongoing safety at the university. Stay up to date with the latest developments. Learn more.

Barite formation in the ocean: Origin of amorphous and crystalline precipitates

TitleBarite formation in the ocean: Origin of amorphous and crystalline precipitates
Publication TypeJournal Article
Year of Publication2019
AuthorsMartinez-Ruiz F., Paytam A., Gonzalez-Munoz M.T, Jroundi F., Abad M.M, Lam P.J, Bishop J.KB, Horner T.J, Morton P.L, Kastner M.
JournalChemical Geology
Date Published2019/04
Type of ArticleArticle
ISBN Number0009-2541
Accession NumberWOS:000462772400031
Keywordsbacteria; Barite; Biofilms; calcite; dissolved barium; EPS; export; Geochemistry & Geophysics; Marine barite; ocean productivity; organic-carbon remineralization; precipitation; southern-ocean; substances; transparent exopolymer particles; twilight zone

Ocean export production is a key constituent in the global carbon cycle impacting climate. Past ocean export production is commonly estimated by means of barite and Barium proxies. However, the precise mechanisms underlying barite precipitation in the undersaturated marine water column are not fully understood. Here we present a detailed mineralogical and crystallographic analysis of barite from size-fractionated particulate material collected using multiple unit large volume in-situ filtration systems in the North Atlantic and the Southern Ocean. Our data suggest that marine barite forms from an initial amorphous phosphorus-rich phase that binds Ba, which evolves into barite crystals whereby phosphate groups are substituted by sulfate. Scanning electron microscopy observations also show the association of barite particles with organic matter aggregates and with extracellular polymeric substances (EPS). These results are consistent with experimental work showing that in bacterial biofilms Ba binds to phosphate groups in both cells and EPS, which promotes locally high concentrations of Ba leading to saturated microenvironments favoring barite precipitation. These results strongly suggest a similar precipitation mechanism in the ocean, which is consistent with the close link between bacterial production and abundance of Ba-rich particulates in the water column. We argue that EPS play a major role in mediating barite formation in the undersaturated oceanic water column; specifically, increased productivity and organic matter degradation in the mesopelagic zone would entail more extensive EPS production, thereby promoting Ba bioaccumulation and appropriate microenvironments for barite precipitation. This observation contributes toward better understanding of Ba proxies and their utility for reconstructing past ocean export productivity. This article is part of a special issue entitled: "Cycles of trace elements and isotopes in the ocean - GEOTRACES and beyond" - edited by Tim M. Conway, Tristan Horner, Yves Plancherel, and Aridane G. Gonzalez.

Short TitleChem. Geol.
Student Publication: