Coronavirus Information for the UC San Diego Community

Our leaders are working closely with federal and state officials to ensure your ongoing safety at the university. Stay up to date with the latest developments. Learn more.

Comparison of the mixing state of long-range transported Asian and African mineral dust

TitleComparison of the mixing state of long-range transported Asian and African mineral dust
Publication TypeJournal Article
Year of Publication2015
AuthorsFitzgerald E., Ault AP, Zauscher M.D, Mayol-Bracero O.L, Prather KA
JournalAtmospheric Environment
Date Published2015/08
Type of ArticleArticle
ISBN Number1352-2310
Accession NumberWOS:000358809600003
Keywordsatmospheric aerosol-particles; Atmospheric processing; ATOFMS; cheju island; chemistry; climate; Clouds; desert; dust; emissions; Gobi Desert; mineral dust; refractive-index; Sahara Desert; sulfate

Mineral dust from arid regions represents the second largest global source of aerosols to the atmosphere. Dust strongly impacts the radiative balance of the earth's atmosphere by directly scattering solar radiation and acting as nuclei for the formation of liquid droplets and ice nuclei within clouds. The climate effects of mineral dust aerosols are poorly understood, however, due to their complex chemical and physical properties, which continuously evolve during atmospheric transport. This work focuses on characterizing atmospheric mineral dust from the two largest global dust sources: the Sahara Desert in Africa and the Gobi and Taklamakan Deserts in Asia. Measurements of individual aerosol particle size and chemical mixing state were made at El Yunque National Forest, Puerto Rico, downwind of the Sahara Desert, and Gosan, South Korea, downwind of the Gobi and Taklamakan Deserts. In general, the chemical characterization of the individual dust particles detected at these two sites reflected the dominant mineralogy of the source regions; aluminosilicate-rich dust was more common at El Yunque (similar to 91% of El Yunque dust particles vs. similar to 69% of Gosan dust particles) and calcium-rich dust was more common at Gosan (similar to 22% of Gosan dust particles vs. similar to 2% of El Yunque dust particles). Furthermore, dust particles from Africa and Asia were subjected to different transport conditions and atmospheric processing; African dust showed evidence of cloud processing, while Asian dust was modified via heterogeneous chemistry and direct condensation of secondary species. A larger fraction of dust detected at El Yunque contained the cloud-processing marker oxalate ion compared to dust detected at Gosan (similar to 20% vs similar to 9%). Additionally, nearly 100% of dust detected at Gosan contained nitrate, showing it was aged via heterogeneous reactions with nitric acid, compared to only similar to 60% of African dust. Information on the distinct differences in the chemical composition of mineral dust particles, as well as the mechanisms and extent of atmospheric processing, is critical for assessing its impacts on the earth's radiative budget through scattering, absorption, and nucleating cloud droplets and ice crystals. (C) 2015 Elsevier Ltd. All rights reserved.

Student Publication: