Coronavirus Information for the UC San Diego Community

Our leaders are working closely with federal and state officials to ensure your ongoing safety at the university. Stay up to date with the latest developments. Learn more.

Composite physical-biological El Nino and La Nina conditions in the California Current System in CESM1-POP2-BEC

TitleComposite physical-biological El Nino and La Nina conditions in the California Current System in CESM1-POP2-BEC
Publication TypeJournal Article
Year of Publication2019
AuthorsCordero-Quiros N., Miller AJ, Subramanian AC, Luo J.Y, Capotondi A.
Date Published2019/10
Type of ArticleArticle
ISBN Number1463-5003
Accession NumberWOS:000487016600002
Keywordsacclimation; california current system; chlorophyll variability; climate-change; Composite; enso; interactions; Meteorology & Atmospheric Sciences; model; nonlinearity; oceanography; patterns; Physical-biological; resolution; responses; sensitivity

El Nino-Southern Oscillation (ENSO) is recognized as one of the potentially predictable drivers of California Current System (CCS) variability. In this study, we analyze a 67-year coarse-resolution (similar to 1 degrees) simulation using the ocean model CESM-POP2-BEC forced by NCEP/NCAR reanalysis winds to develop a model composite of the physical-biological response of the CCS during ENSO events. The model results are also compared with available observations. The composite anomalies for sea surface temperature (SST), pycnocline depth, 0m-100m vertically averaged chlorophyll, 0m-100m vertically averaged zooplankton, 25m-100m vertically averaged nitrate, and oxygen at 200m depth exhibit large-scale coherent relationships between physics and the ecosystem, including reduced nutrient and plankton concentrations during El Nino, and increased nutrient and plankton concentrations during La Nina. However, the anomalous model response in temperature, chlorophyll, and zooplankton is generally much weaker than observed and includes a 1-2 month delay compared to observations. We also highlight the asymmetry in the model CCS response, where composite model La Nina events are stronger and more significant than model El Nino events, which is a feature previously identified in observations of CCS SST as well as in tropical Pacific Nino-4 SST where atmospheric teleconnections associated with ENSO are forced. These physical-biological composites provide a view of some of the limitations to the potentially predictable impacts of ENSO teleconnections on the CCS within the modeling framework of CESM-POP2-BEC.

Student Publication: