Deep-ocean mixing driven by small-scale internal tides

TitleDeep-ocean mixing driven by small-scale internal tides
Publication TypeJournal Article
Year of Publication2019
AuthorsVic C., Garabato A.CN, Green J.AM, Waterhouse A.F, Zhao Z.X, Melet A., de Lavergne C., Buijsman M.C, Stephenson G.R
Volume10
Date Published2019/05
Type of ArticleArticle
ISBN Number2041-1723
Accession NumberWOS:000467370800004
Keywordsenergy; fluxes; generation; global ocean; patterns; propagation; Science & Technology - Other Topics; tidal dissipation; topex/poseidon altimetry; topography; variability; waves
Abstract

Turbulent mixing in the ocean is key to regulate the transport of heat, freshwater and biogeochemical tracers, with strong implications for Earth's climate. In the deep ocean, tides supply much of the mechanical energy required to sustain mixing via the generation of internal waves, known as internal tides, whose fate-the relative importance of their local versus remote breaking into turbulence-remains uncertain. Here, we combine a semi-analytical model of internal tide generation with satellite and in situ measurements to show that from an energetic viewpoint, small-scale internal tides, hitherto overlooked, account for the bulk (>50%) of global internal tide generation, breaking and mixing. Furthermore, we unveil the pronounced geographical variations of their energy proportion, ignored by current parameterisations of mixing in climate-scale models. Based on these results, we propose a physically consistent, observationally supported approach to accurately represent the dissipation of small-scale internal tides and their induced mixing in climate-scale models.

DOI10.1038/s41467-019-10149-5
Student Publication: 
No
Research Topics: 
sharknado