Effects of CO2-induced pH reduction on the exoskeleton structure and biophotonic properties of the shrimp Lysmata californica

TitleEffects of CO2-induced pH reduction on the exoskeleton structure and biophotonic properties of the shrimp Lysmata californica
Publication TypeJournal Article
Year of Publication2015
AuthorsTaylor J.RA, Gilleard J.M, Allen M.C, Deheyn DD
JournalScientific Reports
Volume5
Date Published2015/06
Type of ArticleArticle
ISBN Number2045-2322
Accession NumberWOS:000355600100001
Keywordsacid-base-balance; acidification; calcifiers; callinectes-sapidus; cleaner shrimp; crab necora puber; marine; molting cycle; ocean; panulirus-argus-latreille; seawater acidification; spiny lobster
Abstract

The anticipated effects of CO2-induced ocean acidification on marine calcifiers are generally negative, and include dissolution of calcified elements and reduced calcification rates. Such negative effects are not typical of crustaceans for which comparatively little ocean acidification research has been conducted. Crustaceans, however, depend on their calcified exoskeleton for many critical functions. Here, we conducted a short-term study on a common caridean shrimp, Lysmata californica, to determine the effect of CO2-driven reduction in seawater pH on exoskeleton growth, structure, and mineralization and animal cryptic coloration. Shrimp exposed to ambient (7.99 +/- 0.04) and reduced pH (7.53 +/- 0.06) for 21 days showed no differences in exoskeleton growth (percent increase in carapace length), but the calcium weight percent of their cuticle increased significantly in reduced pH conditions, resulting in a greater Ca:Mg ratio. Cuticle thickness did not change, indicating an increase in the mineral to matrix ratio, which may have mechanical consequences for exoskeleton function. Furthermore, there was a 5-fold decrease in animal transparency, but no change in overall shrimp coloration (red). These results suggest that even short-term exposure to CO2-induced pH reduction can significantly affect exoskeleton mineralization and shrimp biophotonics, with potential impacts on crypsis, physical defense, and predator avoidance.

DOI10.1038/srep10608
Short TitleSci Rep
Student Publication: 
No
sharknado