Genome of the halotolerant green alga Picochlorum sp reveals strategies for thriving under fluctuating environmental conditions

TitleGenome of the halotolerant green alga Picochlorum sp reveals strategies for thriving under fluctuating environmental conditions
Publication TypeJournal Article
Year of Publication2015
AuthorsFoflonker F., Price D.C, Qiu H., Palenik B, Wang S.Y, Bhattacharya D.
JournalEnvironmental Microbiology
Volume17
Pagination412-426
Date Published2015/02
Type of ArticleArticle
ISBN Number1462-2912
Accession NumberWOS:000350546200011
Keywordsacetoin; arabidopsis-thaliana; bacillus-subtilis; chlamydomonas-reinhardtii; chlorella-vulgaris; functional expression; gene-transfer; growth; multiple sequence alignment; salt tolerance
Abstract

An expected outcome of climate change is intensification of the global water cycle, which magnifies surface water fluxes, and consequently alters salinity patterns. It is therefore important to understand the adaptations and limits of microalgae to survive changing salinities. To this end, we sequenced the 13.5Mbp genome of the halotolerant green alga PicochlorumSENEW3 (SE3) that was isolated from a brackish water pond subject to large seasonal salinity fluctuations. PicochlorumSE3 encodes 7367 genes, making it one of the smallest and most gene dense eukaryotic genomes known. Comparison with the pico-prasinophyte Ostreococcus tauri, a species with a limited range of salt tolerance, reveals the enrichment of transporters putatively involved in the salt stress response in PicochlorumSE3. Analysis of cultures and the protein complement highlight the metabolic flexibility of PicochlorumSE3 that encodes genes involved in urea metabolism, acetate assimilation and fermentation, acetoin production and glucose uptake, many of which form functional gene clusters. Twenty-four cases of horizontal gene transfer from bacterial sources were found in PicochlorumSE3 with these genes involved in stress adaptation including osmolyte production and growth promotion. Our results identify PicochlorumSE3 as a model for understanding microalgal adaptation to stressful, fluctuating environments.

DOI10.1111/1462-2920.12541
Student Publication: 
No
sharknado