History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment (AGAGE)

TitleHistory of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment (AGAGE)
Publication TypeJournal Article
Year of Publication2018
AuthorsPrinn RG, Weiss RF, Arduini J., Arnold T., DeWitt H.L, Fraser PJ, Ganesan A.L, Gasore J., Harth CM, Hermansen O., Kim J., Krummel PB, Li S.L, Loh Z.M, Lunder C.R, Maione M., Manning A.J, Miller B., Mitrevski B., Mühle J, O'Doherty S, Park S., Reimann S., Rigby M, Saito T., Salameh PK, Schmidt R., Simmonds PG, Steele LP, Vollmer M.K, Wang R.H, Yao B., Yokouchi Y., Young D, Zhou L.X
JournalEarth System Science Data
Volume10
Pagination985-1018
Date Published2018/06
Type of ArticleArticle; Data Paper
ISBN Number1866-3508
Accession NumberWOS:000434358300001
Keywordsbayesian inversion method; east-asia; emissions; european emissions; Geology; in-situ measurements; mace head; mass-spectrometry; Meteorology & Atmospheric Sciences; methyl chloroform; nitrous-oxide emissions; ratio; regional background station; transcom model simulations
Abstract

We present the organization, instrumentation, datasets, data interpretation, modeling, and accomplishments of the multinational global atmospheric measurement program AGAGE (Advanced Global Atmospheric Gases Experiment). AGAGE is distinguished by its capability to measure globally, at high frequency, and at multiple sites all the important species in the Montreal Protocol and all the important non-carbon-dioxide (non-CO2) gases assessed by the Intergovernmental Panel on Climate Change (CO2 is also measured at several sites). The scientific objectives of AGAGE are important in furthering our understanding of global chemical and climatic phenomena. They are the following: (1) to accurately measure the temporal and spatial distributions of anthropogenic gases that contribute the majority of reactive halogen to the stratosphere and/or are strong infrared absorbers (chlorocarbons, chlorofluorocarbons CFCs, bromocarbons, hydrochlorofluorocarbons HCFCs, hydrofluorocarbons HFCs and polyfluorinated compounds (perfluorocarbons PFCs), nitrogen trifluoride NF3, sulfuryl fluoride SO2F2, and sulfur hexafluoride SF6) and use these measurements to determine the global rates of their emission and/or destruction (i.e., lifetimes); (2) to accurately measure the global distributions and temporal behaviors and determine the sources and sinks of non-CO2 biogenic anthropogenic gases important to climate change and/or ozone depletion (methane CH4, nitrous oxide N20, carbon monoxide CO, molecular hydrogen H2, methyl chloride CH3C1, and methyl bromide CH3Br); (3) to identify new long-lived greenhouse and ozone -depleting gases (e.g., SO2F2, NF3, heavy PFCs (C4Fm, C5F12, C6F 14, C7F16, and C8F18) and hydrofluoroolefins (HF0s; e.g., CH2 = CFCF3) have been identified in AGAGE), initiate the real-time monitoring of these new gases, and reconstruct their past histories from AGAGE, air archive, and firn air measurements; (4) to determine the average concentrations and trends of tropospheric hydroxyl radicals (OH) from the rates of destruction of atmospheric trichloroethane (CH3CC13), HFCs, and HCFCs and estimates of their emissions; (5) to determine from atmospheric observations and estimates of their destruction rates the magnitudes and distributions by region of surface sources and sinks of all measured gases; (6) to provide accurate data on the global accumulation of many of these trace gases that are used to test the synoptic-, regional-, and global -scale circulations predicted by three-dimensional models; and (7) to provide global and regional measurements of methane, carbon monoxide, and molecular hydrogen and estimates of hydroxyl levels to test primary atmospheric oxidation pathways at midlatitudes and the tropics. Network Information and Data Repository: http://agage.mit.edu/data or http://cdiac.ess-dive.lbl.gov/ndps/alegage.html (https://doi.org/10.3334/CDIAC/atg.db1001).

DOI10.5194/essd-10-985-2018
Student Publication: 
No