Impact of marine biogeochemistry on the chemical mixing state and cloud forming ability of nascent sea spray aerosol

TitleImpact of marine biogeochemistry on the chemical mixing state and cloud forming ability of nascent sea spray aerosol
Publication TypeJournal Article
Year of Publication2013
AuthorsCollins DB, Ault AP, Moffet RC, Ruppel MJ, Cuadra-Rodriguez LA, Guasco TL, Corrigan CE, Pedler BE, Azam F, Aluwihare LI, Bertram TH, Roberts GC, Grassian VH, Prather KA
JournalJournal of Geophysical Research-Atmospheres
Volume118
Pagination8553-8565
Date Published2013/08
Type of ArticleArticle
ISBN Number2169-897X
Accession NumberWOS:000324032900030
Keywordsactivity; aerosol mixing state; atlantic-ocean; boundary-layer; ccn; chemistry-climate interactions; cloud condensation nuclei; condensation nuclei; dissolved organic-matter; droplet activation; global distribution; hygroscopic growth; Marine bacteria; north pacific; sea spray aerosol; soluble organics
Abstract

The composition and properties of sea spray aerosol, a major component of the atmosphere, are often controlled by marine biological activity; however, the scope of impacts that ocean chemistry has on the ability for sea spray aerosol to act as cloud condensation nuclei (CCN) is not well understood. In this study, we utilize a mesocosm experiment to investigate the impact of marine biogeochemical processes on the composition and mixing state of sea spray aerosol particles with diameters<0.2 mu m produced by controlled breaking waves in a unique ocean-atmosphere facility. An increase in relative abundance of a distinct, insoluble organic particle type was observed after concentrations of heterotrophic bacteria increased in the seawater, leading to an 86 +/- 5% reduction in the hygroscopicity parameter () at 0.2% supersaturation. Aerosol size distributions showed very little change and the submicron organic mass fraction increased by less than 15% throughout the experiment; as such, neither of these typical metrics can explain the observed reduction in hygroscopicity. Predictions of the hygroscopicity parameter that make the common assumption that all particles have the same bulk organic volume fractions lead to overpredictions of CCN concentrations by 25% in these experiments. Importantly, key changes in sea spray aerosol mixing state that ultimately influenced CCN activity were driven by bacteria-mediated alterations to the organic composition of seawater.

DOI10.1002/jgrd.50598
Integrated Research Themes: 
Student Publication: 
No
sharknado