The impact of shipping, agricultural, and urban emissions on single particle chemistry observed aboard the R/V Atlantis during CalNex

TitleThe impact of shipping, agricultural, and urban emissions on single particle chemistry observed aboard the R/V Atlantis during CalNex
Publication TypeJournal Article
Year of Publication2013
AuthorsGaston C.J, Quinn P.K, Bates T.S, Gilman J.B, Bon D.M, Kuster W.C, Prather KA
JournalJournal of Geophysical Research-Atmospheres
Date Published2013/05
Type of ArticleArticle
ISBN Number2169-897X
Accession NumberWOS:000325272300077
Keywordsaerosol composition; air pollution; atmospheric particles; biomass-burning aerosols; boundary-layer; CalNex; chemical-characterization; flight mass-spectrometry; los-angeles basin; marine; mass spectrometry; mixing state; pm2.5 source contributions; san-joaquin valley; secondary organic aerosol; single particle

The Research at the Nexus of Air Quality and Climate Change (CalNex) field campaign was undertaken to obtain a better understanding of the regional impacts of different pollution sources in California. As part of this study, real-time shipboard measurements were made of the size-resolved, single-particle mixing state of submicron and supermicron particles (0.2-3.0 mu m aerodynamic diameter) along the California coast where major differences were noted between Southern and Northern California. In Southern California, particles containing soot made up the largest fraction of submicron particles (similar to 38% on average and up to similar to 89% by number), whereas organic carbon particles comprised the largest fraction of submicron number concentrations (similar to 29% on average and up to similar to 78% by number) in Northern California including the Sacramento area. The mixing state of these carbonaceous particle types varied during the cruise with sulfate being more prevalent on soot-containing particles in Southern California due to the influence of fresh shipping and port emissions in addition to contributions from marine biogenic emissions. Contributions from secondary organic aerosol species, including amines, and nitrate were more prevalent in Northern California, as well as during time periods impacted by agricultural emissions (e.g., from the inland Riverside and Central Valley regions). These regional differences and changes in the mixing state and sources of particles have implications for heterogeneous reactivity, water uptake, and cloud-nucleating abilities for aerosols in California.

Integrated Research Themes: 
Student Publication: