Linking atmospheric river hydrological impacts on the US West Coast to Rossby wave breaking

TitleLinking atmospheric river hydrological impacts on the US West Coast to Rossby wave breaking
Publication TypeJournal Article
Year of Publication2017
AuthorsHu H.C, Dominguez F., Wang Z, Lavers D.A, Zhang G., Ralph FM
JournalJournal of Climate
Date Published2017/05
Type of ArticleArticle
ISBN Number0894-8755
Accession NumberWOS:000399680500018
Keywordsalgorithm; california; events; mean circulation; pacific; precipitation; radar; united-states; variability

Atmospheric rivers (ARs) have significant hydrometeorological impacts on the U.S. West Coast. This study presents the connection between the characteristics of large-scale Rossby wave breaking (RWB) over the eastern North Pacific and the regional-scale hydrological impacts associated with landfalling ARs on the U.S. West Coast (36 degrees-49 degrees N). ARs associated with RWB account for two-thirds of the landfalling AR events and >70% of total AR-precipitation in the winter season. The two regimes of RWB-anticyclonic wave breaking (AWB) and cyclonic wave breaking (CWB)-are associated with different directions of the vertically integrated water vapor transport (IVT). AWB-ARs impinge in a more westerly direction on the coast whereas CWB-ARs impinge in a more southwesterly direction. Most of the landfalling ARs along the northwestern coast of the United States (states of Washington and Oregon) are AWB-ARs. Because of their westerly impinging angles when compared to CWB-ARs, AWBARs arrive more orthogonally to the western Cascades and more efficiently transform water vapor into precipitation through orographic lift than CWB-ARs. Consequently, AWB-ARs are associated with the most extreme streamflows in the region. Along the southwest coast of the United States (California), the southwesterly impinging angles of CWBARs are more orthogonal to the local topography. Furthermore, the southwest coast CWB-ARs have more intense IVT. Consequently, CWB-ARs are associated with the most intense precipitation. As a result, most of the extreme streamflows in southwest coastal basins are associated with CWB-ARs. In summary, depending on the associated RWB type, ARs impinge on the local topography at a different angle and have a different spatial signature of precipitation and streamflow.

Student Publication: