Linking variations in sea spray aerosol particle hygroscopicity to composition during two microcosm experiments

TitleLinking variations in sea spray aerosol particle hygroscopicity to composition during two microcosm experiments
Publication TypeJournal Article
Year of Publication2016
AuthorsForestieri SD, Cornwell G.C, Helgestad T.M, Moore K.A, Lee C., Novak G.A, Sultana C.M, Wang X.F, Bertram TH, Prather KA, Cappa CD
JournalAtmospheric Chemistry and Physics
Volume16
Pagination9003-9018
Date Published2016/08
Type of ArticleArticle
ISBN Number1680-7316
Accession NumberWOS:000381213300015
Keywordsboundary-layer; carbon; growth; microbial loop; mixing state; model; organic-matter enrichment; primary marine aerosol; size matters; submicron
Abstract

The extent to which water uptake influences the light scattering ability of marine sea spray aerosol (SSA) particles depends critically on SSA chemical composition. The organic fraction of SSA can increase during phytoplankton blooms, decreasing the salt content and therefore the hygroscopicity of the particles. In this study, subsaturated hygroscopic growth factors at 85% relative humidity (GF(85 %)) of predominately submicron SSA particles were quantified during two induced phytoplankton blooms in marine aerosol reference tanks (MARTs). One MART was illuminated with fluorescent lights and the other was illuminated with sunlight, referred to as the "indoor" and "outdoor" MARTs, respectively. Optically weighted GF(85 %) values for SSA particles were derived from measurements of light scattering and particle size distributions. The mean optically weighted SSA diameters were 530 and 570 nm for the indoor and outdoor MARTs, respectively. The GF(85 %) measurements were made concurrently with online particle composition measurements, including bulk composition (using an Aerodyne high-resolution aerosol mass spectrometer) and single particle (using an aerosol time-of-flight mass spectrometer) measurement, and a variety of water-composition measurements. During both microcosm experiments, the observed optically weighted GF(85 %) values were depressed substantially relative to pure inorganic sea salt by 5 to 15 %. There was also a time lag between GF(85 %) depression and the peak chlorophyll a (Chl a) concentrations by either 1 (indoor MART) or 3-to-6 (outdoor MART) days. The fraction of organic matter in the SSA particles generally increased after the Chl a peaked, also with a time lag, and ranged from about 0.25 to 0.5 by volume. The observed depression in the GF(85 %) values (relative to pure sea salt) is consistent with the large observed volume fractions of nonrefractory organic matter (NR-OM) comprising the SSA. The GF(85 %) values exhibited a reasonable negative correlation with the SSA NR-OM volume fractions after the peak of the blooms (i.e., Chl a maxima); i.e., the GF(85 %) values generally decreased when the NR-OM volume fractions increased. The GF(85 %) vs. NR-OM volume fraction relationship was interpreted using the Zdanovskii-Stokes-Robinson (ZSR) mixing rule and used to estimate the GF(85 %) of the organic matter in the nascent SSA. The estimated pure NROM GF(85 %) values were 1.16 +/- 0.09 and 1.23 +/- 0.10 for the indoor and outdoor MARTS, respectively. These measurements demonstrate a clear relationship between SSA particle composition and the sensitivity of light scattering to variations in relative humidity. The implications of these observations to the direct climate effects of SSA particles are discussed.

DOI10.5194/acp-16-9003-2016
Short TitleAtmos. Chem. Phys.
Student Publication: 
No
sharknado