Coronavirus Information for the UC San Diego Community

Our leaders are working closely with federal and state officials to ensure your ongoing safety at the university. Stay up to date with the latest developments. Learn more.

Measuring light scattering and absorption in corals with Inverse Spectroscopic Optical Coherence Tomography (ISOCT): a new tool for non-invasive monitoring

TitleMeasuring light scattering and absorption in corals with Inverse Spectroscopic Optical Coherence Tomography (ISOCT): a new tool for non-invasive monitoring
Publication TypeJournal Article
Year of Publication2019
AuthorsSpicer G.LC, Eid A., Wangpraseurt D., Swain T.D, Winkelmann J.A, Yi J., Kuhl M., Marcelino L.A, Backman V.
Volume9
Date Published2019/10
Type of ArticleArticle
ISBN Number2045-2322
Accession NumberWOS:000488481500011
Keywordsbiological tissue; climate-change; growth; microenvironment; photosynthesis; radiation; Science & Technology - Other Topics; scleractinian corals; skeletons; susceptibility; zooxanthellae
Abstract

The success of reef-building corals for >200 million years has been dependent on the mutualistic interaction between the coral host and its photosynthetic endosymbiont dinoflagellates (family Symbiodiniaceae) that supply the coral host with nutrients and energy for growth and calcification. While multiple light scattering in coral tissue and skeleton significantly enhance the light microenvironment for Symbiodiniaceae, the mechanisms of light propagation in tissue and skeleton remain largely unknown due to a lack of technologies to measure the intrinsic optical properties of both compartments in live corals. Here we introduce ISOCT (inverse spectroscopic optical coherence tomography), a non-invasive approach to measure optical properties and three-dimensional morphology of living corals at micron-and nano-length scales, respectively, which are involved in the control of light propagation. ISOCT enables measurements of optical properties in the visible range and thus allows for characterization of the density of light harvesting pigments in coral. We used ISOCT to characterize the optical scattering coefficient (mu(s)) of the coral skeleton and chlorophyll a concentration of live coral tissue. ISOCT further characterized the overall micro-and nano-morphology of live tissue by measuring differences in the sub-micron spatial mass density distribution (D) that vary throughout the tissue and skeleton and give rise to light scattering, and this enabled estimates of the spatial directionality of light scattering, i. e., the anisotropy coefficient, g. Thus, ISOCT enables imaging of coral nanoscale structures and allows for quantifying light scattering and pigment absorption in live corals. ISOCT could thus be developed into an important tool for rapid, non-invasive monitoring of coral health, growth and photophysiology with unprecedented spatial resolution.

DOI10.1038/s41598-019-50658-3
Student Publication: 
No
sharknado