A method for specifying atmospheric gravity wavefields for long-range infrasound propagation calculations

TitleA method for specifying atmospheric gravity wavefields for long-range infrasound propagation calculations
Publication TypeJournal Article
Year of Publication2013
AuthorsDrob D.P, Broutman D., Hedlin M.A, Winslow N.W, Gibson R.G
JournalJournal of Geophysical Research-Atmospheres
Volume118
Pagination3933-3943
Date Published2013/05
Type of ArticleArticle
ISBN Number2169-897X
Accession NumberWOS:000325272300002
Keywordsacoustics; dissipation; drag; gravity waves; infrasound; middle atmosphere; morphology; mountain waves; ray tracing; siesmology; signals; simplified fourier method; thermospheric responses; trapped lee waves; winds
Abstract

Two important challenges in infrasound propagation physics are (1) to explain frequently observed infrasound signals in the classical near-field shadow zones and (2) to accurately predict observed waveform amplitude and signal duration. For these problems, the role that small-scale internal atmospheric gravity wave fluctuations play has recently been realized. This paper provides a methodology for representing small-scale internal gravity wave fluctuations which is suitable for infrasound propagation calculations. Adapted from the numerical weather prediction and climate modeling communities, the resulting stochastic gravity wave noise field model is three-dimensional, time dependent, and self-consistent with the atmospheric background state. To illustrate the methodology the resultant gravity wavefields are applied to ray-trace simulations of observed infrasound travel times for a dense seismic network in the Western United States which recorded infrasound signals from a large surface explosion.

DOI10.1029/2012jd018077
Student Publication: 
No
sharknado