Coronavirus Information for the UC San Diego Community

Our leaders are working closely with federal and state officials to ensure your ongoing safety at the university. Stay up to date with the latest developments. Learn more.

The nearshore heat budget: Effects of stratification and surfzone dynamics

TitleThe nearshore heat budget: Effects of stratification and surfzone dynamics
Publication TypeJournal Article
Year of Publication2019
AuthorsSinnett G., Feddersen F
Date Published2019/11
Type of ArticleArticle
ISBN Number2169-9275
Accession NumberWOS:000505404600052
Keywordsalbedo; balances; driven; exchange; fluxes; island; oceanography; Shelf; stress; temperature variability; waves

Temperature variability in the nearshore (from approximate to 6-m depth to the shoreline) is influenced by many processes including wave breaking and internal waves. A nearshore heat budget resolving these processes has not been considered. A 7-month experiment at the Scripps Institution of Oceanography Pier (shoreline to 6-m depth) measured temperature and surface and cross-shore heat fluxes to examine a nearshore heat budget with fine cross-shore spatial (approximate to 20 m) and temporal (5 day to 4 h) resolution. Winds, waves, air and water temperature, and in particular, pier end stratification varied considerably from late Fall to late Spring. The largest heat flux terms were shortwave solar radiation and baroclinic advective heat flux both varying on tidal time scales. The net heat flux is coherent and in phase with the nearshore heat content change at diurnal and semidiurnal frequencies. The binned mean heat budget has squared correlation R-2 = 0.97 and best-fit slope of 0.76. Including an elevated breaking wave albedo parameterization reduced the residual heat flux and improved the best-fit slope. Baroclinic and barotropic advective heat fluxes have significant noise, and removing them from the heat budget improves the best-fit slope when stratification is weak. However, when daily mean stratification is large, baroclinic advective heat flux dominates variability and is required to capture large (approximate to 3 degrees C h(-1)) internal wave events. At times, large heat budget residuals highlight neglected heat budget terms, pointing to surfzone alongshore advection of temperature anomalies.

Student Publication: