Nitrogen and Isotope Flows Through the Costa Rica Dome Upwelling Ecosystem: The Crucial Mesozooplankton Role in Export Flux

TitleNitrogen and Isotope Flows Through the Costa Rica Dome Upwelling Ecosystem: The Crucial Mesozooplankton Role in Export Flux
Publication TypeJournal Article
Year of Publication2018
AuthorsStukel M.R, Decima M, Landry MR, Selph K.E
JournalGlobal Biogeochemical Cycles
Volume32
Pagination1815-1832
Date Published2018/12
Type of ArticleArticle
ISBN Number0886-6236
Accession NumberWOS:000455648700007
Keywordsautotrophic; bacterial-growth efficiency; biological carbon; biological pump; crustaceans; diel vertical migration; Environmental Sciences & Ecology; equatorial; food webs; Geology; linear inverse ecosystem model; Meteorology & Atmospheric; nitrogen cycle; nitrogen isotopes; north pacific; pacific; particulate organic-carbon; phytoplankton production; picoplankton; pump; sciences; stable-isotopes; Trophic position
Abstract

The Costa Rica Dome (CRD) is an open-ocean upwelling ecosystem, with high biomasses of picophytoplankton (especially Synechococcus), mesozooplankton, and higher trophic levels. To elucidate the food web pathways supporting the trophic structure and carbon export in this unique ecosystem, we used Markov Chain Monte Carlo techniques to assimilate data from four independent realizations of N-15 and planktonic rate measurements from the CRD into steady state, multicompartment ecosystem box models (linear inverse models). Model results present well-constrained snapshots of ecosystem nitrogen and stable isotope fluxes. New production is supported by upwelled nitrate, not nitrogen fixation. Protistivory (rather than herbivory) was the most important feeding mode for mesozooplankton, which rely heavily on microzooplankton prey. Mesozooplankton play a central role in vertical nitrogen export, primarily through active transport of nitrogen consumed in the surface layer and excreted at depth, which comprised an average 36-46% of total export. Detritus or aggregate feeding is also an important mode of resource acquisition by mesozooplankton and regeneration of nutrients within the euphotic zone. As a consequence, the ratio of passively sinking particle export to phytoplankton production is very low in the CRD. Comparisons to similar models constrained with data from the nearby equatorial Pacific demonstrate that the dominant role of vertical migrators to the biological pump is a unique feature of the CRD. However, both regions show efficient nitrogen transfer from mesozooplankton to higher trophic levels (as expected for regions with large fish, cetacean, and seabird populations) despite the dominance of protists as major grazers of phytoplankton. Plain Language Summary Most of the world's oceanic regions can be divided into (1) low-nutrient areas where small algae dominate and crustaceans, fish, and whales are scarce or (2) productive areas where large algae dominate, crustaceans and higher trophic levels are abundant, and substantial carbon is transported to depth as part of the biological pump. The Costa Rica Dome (CRD) is a unique natural laboratory for investigating the relationships between algae, zooplankton, and marine biogeochemistry because it is a productive region dominated by cyanobacteria (small algae) that nevertheless sustains large populations of crustaceans, fish, and whales. We used a novel data assimilation tool to constrain a food web model using at-sea rate measurements of plankton activity and nitrogen stable isotopes. We found that protists are an important intermediate trophic level linking cyanobacteria and mesozooplankton. Efficient recycling by the zooplankton community facilitates nitrogen transfer to fish, whales, and seabirds. In the CRD, vertically migrating zooplankton (which feed in the surface during the night but descend to depth during the day to escape predators) play a particularly important role in transporting nitrogen (and carbon dioxide) from the surface to the deep ocean, where it can be removed from the atmosphere.

DOI10.1029/2018gb005968
Student Publication: 
No
sharknado