Pleistocene to recent geomorphic and incision history of the northern Rio Grande gorge, New Mexico: Constraints from field mapping and cosmogenic He-3 surface exposure dating

TitlePleistocene to recent geomorphic and incision history of the northern Rio Grande gorge, New Mexico: Constraints from field mapping and cosmogenic He-3 surface exposure dating
Publication TypeJournal Article
Year of Publication2019
AuthorsClow T., Behrt W.M, Helper M.A
Volume15
Pagination820-838
Date Published2019/06
Type of ArticleArticle
ISBN Number1553-040X
Accession NumberWOS:000469924500011
Keywordscolorado plateau; espanola basin; evolution; fill terraces; fluvial terraces; Geology; ice cap; offset fans; river terraces; terrace formation; uinta mountains
Abstract

In this study, we investigated the geomorphic and incision history for an similar to 5 km reach of the northern Rio Grande gorge in New Mexico using field and LiDAR-based geomorphic mapping and cosmogenic 3 He surface exposure dating. This wide (>1.5 km) and deep (similar to 240 m) section of the gorge exhibits Toreva blocks, incoherent landslides, rock falls, and slumps developed within Servilleta Basalts and intercalated weakly consolidated Pliocene Santa Fe Group gravels. Located deeper in the gorge topographically below the landslides is a flight of six fill and fill-cut terraces (Qt6-Qt1) at 50, 40, 28,21, 10, and 8 m above the modern river. He-3 surface-exposure ages (1-sigma) of multiple samples from each terrace indicate Qt6 was likely abandoned at 69.0 +8.4/-9.2 ka, Qt5 at 36.7 +13.4/-9.0 ka, Qt4 at 26.9 +5.5/-4.2 ka, Qt3 at 25.3 +3.1/-3.2 ka, and Qt2 at 24.3 +7.6/-6.7 ka. We interpret the terraces to record three aggradation-incision cycles during the past similar to 70 k.y. The most prominent terrace surface (Qt4) falls within MIS 2 and appears to closely track incision associated with Pinedale ice retreat. Previous work suggests that the initiation of gorge incision occurred between ca. 440-800 ka, which suggests average incision rates prior to the formation of the highest terrace (Qt6) of 260-512 m/m.y. Average incision from ca. 70 ka to present appears faster, with maximum rates of similar to 752 m/m.y. Compared to incision rates for nearby river systems, rates along the Rio Grande are nearly twice as fast over both middle and late Pleistocene to Holocene timescales, suggesting a persistent driving force for incision that is unique to this river system. Rates of dynamic surface uplift and/or slip along basin-bounding normal faults associated with the Rio Grande rift are over an order of magnitude too small to explain the fast incision; thus we suggest the most probable driver of incision is drainage basin (re-)integration and transient knickpoint migration due to the capture of the northern San Luis Basin during the middle Pleistocene, superimposed on a strong climatic signature in the late Pleistocene.

DOI10.1130/ges02017.1
Student Publication: 
No