Coronavirus Information for the UC San Diego Community

Our leaders are working closely with federal and state officials to ensure your ongoing safety at the university. Stay up to date with the latest developments. Learn more.

Predictability of US West Coast ocean temperatures is not solely due to ENSO

TitlePredictability of US West Coast ocean temperatures is not solely due to ENSO
Publication TypeJournal Article
Year of Publication2019
AuthorsCapotondi A., Sardeshmukh P.D, Di Lorenzo E, Subramanian AC, Miller AJ
Volume9
Date Published2019/07
Type of ArticleArticle
ISBN Number2045-2322
Accession NumberWOS:000477701800096
Keywordsanomalies; decadal variability; meridional modes; north pacific; Science & Technology - Other Topics
Abstract

The causes of the extreme and persistent warming in the Northeast Pacific from the winter of 2013/14 to that of 2014/15 are still not fully understood. While global warming may have contributed, natural influences may also have played a role. El Nino events are often implicated in anomalously warm conditions along the US West Coast (USWC). However, the tropical Pacific sea surface temperature (SST) anomalies were generally weak during 2014, calling into question their role in the USWC warming. In this study, we identify tropical Pacific "sensitivity patterns" that optimally force USWC warming at a later time. We find that such sensitivity patterns do not coincide with the mature SST anomaly patterns usually associated with ENSO, but instead include elements associated with ENSO SST precursors and SST anomalies in the central/western equatorial Pacific. El Nino events that produce large USWC warming, irrespective of their magnitude, do project on the sensitivity pattern and are characterized by a distinct evolution of the North Pacific atmospheric and oceanic fields. However, even weak tropical SST anomalies in the right location, and not necessarily associated with ENSO, can significantly influence USWC conditions and enhance their predictability.

DOI10.1038/s41598-019-47400-4
Student Publication: 
No