Coronavirus Information for the UC San Diego Community

Our leaders are working closely with federal and state officials to ensure your ongoing safety at the university. Stay up to date with the latest developments. Learn more.

Remote and local influences in forecasting Pacific SST: a linear inverse model and a multimodel ensemble study

TitleRemote and local influences in forecasting Pacific SST: a linear inverse model and a multimodel ensemble study
Publication TypeJournal Article
Year of Publication2019
AuthorsDias D.F, Subramanian A., Zanna L., Miller AJ
JournalClimate Dynamics
Date Published2019/03
Type of ArticleArticle
ISBN Number0930-7575
Accession NumberWOS:000463842700038
Keywordseastern-pacific; enso; impact; interactions; Kuroshio Extension; Linear inverse model; meridional modes; Meteorology & Atmospheric Sciences; NMME; predictability; prediction; Sea surface temperature; sea-surface temperature; skill; timescale; variability

A suite of statistical linear inverse models (LIMs) are used to understand the remote and local SST variability that influences SST predictions over the North Pacific region. Observed monthly SST anomalies in the Pacific are used to construct different regional LIMs for seasonal to decadal predictions. The seasonal forecast skills of the LIMs are compared to that from three operational forecast systems in the North American Multi-Model Ensemble (NMME), revealing that the LIM has better skill in the Northeastern Pacific than NMME models. The LIM is also found to have comparable forecast skill for SST in the Tropical Pacific with NMME models. This skill, however, is highly dependent on the initialization month, with forecasts initialized during the summer having better skill than those initialized during the winter. The data are also bandpass filtered into seasonal, interannual and decadal time scales to identify the relationships between time scales using the structure of the propagator matrix. Moreover, we investigate the influence of the tropics and extra-tropics in the predictability of the SST over the region. The Extratropical North Pacific seems to be a source of predictability for the tropics on seasonal to interannual time scales, while the tropics enhance the forecast skill for the decadal component. These results indicate the importance of temporal scale interactions in improving the predictions on decadal timescales. Hence, we show that LIMs are not only useful as benchmarks for estimates of statistical skill, but also to isolate contributions to the forecast skills from different timescales, spatial scales or even model components.

Short TitleClim. Dyn.
Student Publication: