Coronavirus Information for the UC San Diego Community

Our leaders are working closely with federal and state officials to ensure your ongoing safety at the university. Stay up to date with the latest developments. Learn more.

The role of wind gusts in upper ocean diurnal variability

TitleThe role of wind gusts in upper ocean diurnal variability
Publication TypeJournal Article
Year of Publication2017
AuthorsGiglio D., Gille ST, Subramanian AC, Nguyen S.
JournalJournal of Geophysical Research-Oceans
Date Published2017/09
Type of ArticleArticle
ISBN Number2169-9275
Accession NumberWOS:000413167200043
Keywordscycle; Data assimilation; diurnal cycling scheme; diurnal variability; dynamo; equatorial; fluxes; indian-ocean; madden-julian oscillation; mixed-layer; RAMA; sea-surface temperature; tropical pacific; turbulence; upper ocean temperature; warm-layer; wind gusts

Upper ocean processes play a key role in air-sea coupling, with variability on both short and long time scales. The diurnal cycle associated with diurnal solar insolation and nighttime cooling, may act, along with stochastic wind variability, on upper ocean temperatures and stratification resulting in a diurnal warm layer and a nonlinear rectified effect on longer time scales. This study describes diurnal changes in upper ocean temperature for a location in the equatorial Indian Ocean, using observations from the Dynamics of the Madden-Julian Oscillation field campaign, a high vertical resolution 1-D process model, and a diurnal cycling scheme. Solar forcing is the main driver of diurnal variability in upper ocean temperature and stratification. Yet except during nighttime convection, winds with variability on the order of hours (here referred to as "wind gusts") regulate how fast surface water is mixed to greater depths when daily mean winds are weak. Wind gusts are much stronger than diurnal winds. Even using stochastic wind gusts but no diurnal winds as input in a 1-D process model yields an estimate of diurnal temperature that compares well with observations. A new version of the Large and Caron (2015) scheme (LC2015) provides an estimate of upper ocean diurnal temperature that is consistent with observations. LC2015 has the advantage of being suitable for implementation in a climate model, with the goal to improve SST estimates, hence the simulated heat flux at the air-sea interface. Yet LC2015 is not very sensitive to the inclusion or omission of the high-frequency component of the wind.

Short TitleJ Geophys Res-Oceans
Student Publication: