Sequencing rare marine actinomycete genomes reveals high density of unique natural product biosynthetic gene clusters

TitleSequencing rare marine actinomycete genomes reveals high density of unique natural product biosynthetic gene clusters
Publication TypeJournal Article
Year of Publication2016
AuthorsSchorn M.A, Alanjary M.M, Aguinaldo K., Korobeynikov A., Podell S, Patin N., Lincecum T., Jensen PR, Ziemert N., Moore BS
JournalMicrobiology-Sgm
Volume162
Pagination2075-2086
Date Published2016/12
Type of ArticleEditorial Material
ISBN Number1350-0872
Accession NumberWOS:000390264100006
KeywordsActinobacteria; bacteria; diversity; drug discovery; information; phylogenetic analyses; resource; Salinispora; secondary metabolism; sediments
Abstract

Traditional natural product discovery methods have nearly exhausted the accessible diversity of microbial chemicals, making new sources and techniques paramount in the search for new molecules. Marine actinomycete bacteria have recently come into the spotlight as fruitful producers of structurally diverse secondary metabolites, and remain relatively untapped. In this study, we sequenced 21 marine-derived actinomycete strains, rarely studied for their secondary metabolite potential and under-represented in current genomic databases. We found that genome size and phylogeny were good predictors of biosynthetic gene cluster diversity, with larger genomes rivalling the well-known marine producers in the Streptomyces and Salinispora genera. Genomes in the Micrococcineae suborder, however, had consistently the lowest number of biosynthetic gene clusters. By networking individual gene clusters into gene cluster families, we were able to computationally estimate the degree of novelty each genus contributed to the current sequence databases. Based on the similarity measures between all actinobacteria in the Joint Genome Institute's Atlas of Biosynthetic gene Clusters database, rare marine genera show a high degree of novelty and diversity, with Corynebacterium, Gordonia, Nocardiopsis, Saccharomonospora and Pseudonocardia genera representing the highest gene cluster diversity. This research validates that rare marine actinomycetes are important candidates for exploration, as they are relatively unstudied, and their relatives are historically rich in secondary metabolites.

DOI10.1099/mic.0.000386
Short TitleMicrobiology-(UK)
Student Publication: 
No