Standing internal tides in the Tasman Sea observed by gliders

TitleStanding internal tides in the Tasman Sea observed by gliders
Publication TypeJournal Article
Year of Publication2015
AuthorsJohnston T.MS, Rudnick D.L, Kelly S.M
JournalJournal of Physical Oceanography
Date Published2015/11
ISBN Number0022-3670
Accession NumberWOS:000364412100002

Low-mode internal tides are generated at tall submarine ridges, propagate across the open ocean with little attenuation, and reach distant continental slopes. A semidiurnal internal tide beam, identified in previous altimetric observations and modeling, emanates from the Macquarie Ridge, crosses the Tasman Sea, and impinges on the Tasmanian slope. Spatial surveys covering within 150 km of the slope by two autonomous underwater gliders with maximum profile depths of 500 and 1000 m show the steepest slope near 43 degrees S reflects almost all of the incident energy flux to form a standing wave. Starting from the slope and moving offshore by one wavelength (similar to 150 km), potential energy density displays an antinode-node-antinode-node structure, while kinetic energy density shows the opposite.

Mission-mean mode-1 incident and reflected flux magnitudes are distinguished by treating each glider's survey as an internal wave antenna for measuring amplitude, wavelength, and direction. Incident fluxes are 1.4 and 2.3 kW m(-1) from the two missions, while reflected fluxes are 1.2 and 1.8 kW m(-1). From one glider surveying the region of highest energy at the steepest slope, the reflectivity estimates are 0.8 and 1, if one considers the kinetic and potential energy densities separately. These results are in agreement with mode-1 reflectivity of 0.7-1 from a model in one horizontal dimension with realistic topography and stratification. The direction of the incident internal tides is consistent with altimetry and modeling, while the reflected tide is consistent with specular reflection from a straight coastline.

Student Publication: