Coronavirus Information for the UC San Diego Community

Our leaders are working closely with federal and state officials to ensure your ongoing safety at the university. Stay up to date with the latest developments. Learn more.

Understanding the remote influences of ocean weather on the episodic pulses of particulate organic carbon flux

TitleUnderstanding the remote influences of ocean weather on the episodic pulses of particulate organic carbon flux
Publication TypeJournal Article
Year of Publication2020
AuthorsRuhl H.A, Bahr F.L, Henson S.A, Hosking W.B, Espinola B., Kahru M, Daniel P., Drake P., Edwards C.A
Volume173
Date Published2020/03
Type of ArticleArticle
ISBN Number0967-0645
Accession NumberWOS:000527944700013
Keywordsabyssal northeast pacific; biological carbon pump; biological pump; body-size; carbon sequestration; community structure; fecal pellets; Marine snow; modeling system roms; Ocean weather; oceanography; particle; particle-flux; sea-floor; sinking rates; Statistical funnel; tracking
Abstract

The biological carbon pump has been estimated to export similar to 5-15 Gt C yr(-1) into the deep ocean, and forms the principal deep-sea food resource. Irregular, intense pulses of particulate organic carbon (POC) have been found to make up about one-third of the overall POC fluxes at a long-term deep-sea research station influenced by coastal upwelling of the California Current, Station M (34 degrees 50/N, 123 degrees W, 4000 m depth). However, the drivers of these pulses have been challenging to quantify. It has long been recognized that ocean currents can result in particles being advected while sinking to the point of collection by a sediment trap. Thus, a sediment trap time series can incorporate material from a dynamic catchment area, a concept sometimes referred to as a statistical funnel. This concept raises many questions including: what are the day-to-day conditions at the source locations of the sinking POC? And, how might such 'ocean weather' and related ecosystem factors influence the intense variation seen at the seafloor? Here we analyzed three-dimensional ocean currents from a Regional Ocean Modeling System (ROMS) model from 2011 to 2017 to trace the potential source locations of particles sinking at 1000, 100, and 50 m d(-1) from an export depth of 100 m. We then used regionally tailored satellite data products to estimate export flux of POC from these locations. For the 100 m d(-1) speed, the particles had origins of up to similar to 300 km horizontal distance from the sediment trap location, moored at Station M at 3400 m depth., and nearly 1000 km for the 50 m speed. Particle tracking indicated that, there was considerable inter-annual variation in source locations. Particle source locations tended to originate from the east in the summer months, with higher export and POC fluxes. Occasionally these locations were in the vicinity of highly productive ocean features nearer to the coast. We found significant correlations between export flux of organic carbon from the estimated source locations at 100 m depth to trap-estimated POC fluxes at 3400 m depth. These results set the stage for further investigation into sinking speed distributions, conditions at the source locations, and comparisons with mechanistic biogeochemical models and between particle tracking model frameworks.

DOI10.1016/j.dsr2.2020.104741
Student Publication: 
No