CASPO seminar: " Available Potential Energy of Coastal and Estuarine Circulation", Parker MacCready (UW)

11/16/2016 - 3:30pm


Parker MacCready (UW)

"Available Potential Energy of Coastal and Estuarine Circulation

 The mechanical energy budget can be a convenient way to understand they dynamics of fluid systems.  This is particularly true when looking at system adjustment times and the exchange of work and energy among different reservoirs and forcing fields.  Here we use the "local" Available Potential Energy (APE) formulation of Holliday and McIntyre (1981, JFM) in which APE is defined relative to a state in which all isopycnals in a domain are allowed to flatten adiabatically, as per Lorenz (1955) and Winters et al. (1995).  We develop a numerical method (MacCready and Giddings 2016, JPO) to calculate complete, closed energy budgets for ROMS model simulations, and apply it to a realistic simulation of the NE Pacific and Salish Sea.  One interesting feature of the local APE is that it may be decomposed into portions for water parcels that are displaced up- or down- relative to the flattened state, clearly distinguishing types of eddies, wind-driven upwelling, and the stored APE of the estuarine salt intrusion.  There is a large annual cycle of up-APE on the shelf, driven by wind and dissipated by vertical mixing.  In the estuarine waters there is a large reservoir of down-APE modulated by tidal mixing and conversion to KE by the exchange flow."

For more information on this event, contact: 
Bia Villas Boas
Event Calendar: 
Nierenberg Hall 101