Recent Publications

Weekly Highlighted Publication

Identification of a molecular pH sensor in coral

This study lays the foundation for understanding the mechanisms that allow corals to detect and respond to pHi disturbances caused by both metabolic and environmental sources. The dynamic interplay of symbiont photosynthesis, coral calcification and cellular respiration involves the production and consumption of acid–base equivalents at different rates and locations within a coral throughout the diel cycle. Because sAC produces the ubiquitous messenger molecule cAMP in response to acid–base disturbances, it can potentially modulate every aspect of physiology by post-translational modifications of target proteins. Thus, the role of sAC in coral physiology is likely critical for the many essential processes that depend on CO2, pH and [Embedded Image] . This type of fundamental mechanistic understanding of coral biology is also essential for predicting how corals will fare in the face of global climate change. Finally, the observation of sAC-dependent pHi sensing in corals, similar to that found in mammalian cells, confirms sAC is an evolutionarily conserved acid–base sensor.

Search Recent Publications