Instructor: Cathy Constable (cconstable@ucsd.edu, x43183)

4 units, 3 hour meeting/week, homework, S/U grades permitted.

Prerequisites: graduate standing or consent of instructor.

During Fall 2014, the class is scheduled to meet on Tuesdays and Thursdays, 2:00-3:200 PM in IGPP, Revelle Lab Room 4301.

Description: This class deals with geophysical inverse theory. The key factor that makes inverse theory different from simple parameter estimation (the classical statistical problem) is that the number of observations available is finite, while the unknown model requires infinitely many variables for its full description. Thus in practical inverse problems (those based on real as opposed to idealized data) there is always ambiguity in the model. Finding a particular model solution involves a choice from an infinitely large collection of alternative solutions. The approach taken in the class is to apply mathematical optimization to select the simplest models. This avoids the introduction of unnecessary exciting features. To discover reliable properties of the earth, independent of any particular model, we must calculate upper and lower bounds on functionals that represent those properties. The utility of stochastic methods for identifying a range of acceptable models will also be discussed.

The class will begin with a synopsis of some necessary mathematical ideas. There will be homework, which will be posted on the class website: http://igppweb.ucsd.edu/cathy/Classes/SIO230/index.html Other information will also be posted here. The text is Geophysical Inverse Theory, Princeton University Press, 1994, by R. L. Parker. Students may also find the text by Aster et al (2013) a useful supplement. Further books for background reading on mathematical and statistical matters are listed below.

Topics included:

1. Mathematical Precursors

2. Introduction to functional analysis up to the Projection Theorem for Hilbert spaces.

3. Linear inverse problems with exact and uncertain data; model construction; regularization as the minimization of model complexity.

4. Numerical methods for practical solutions, including QR and SVD factorizations.

5. Resolution: Backus-Gilbert theory.

6. Inference: bounding functionals in Hilbert and other Banach spaces; ideal body theory.

7. Other constraints; linear and quadratic programming.

10. Iterative optimization: Backus-Gilbert creeping; Occam’s method.

11. Stochastic inversion
Recommended Reading

