Syllabus 202A (Acoustics)
W. A. Kuperman

1 Fundamental Acoustics: Some Background
2 Fluid Mechanics, Thermodynamics and the Acoustic Wave Equation
 2.1 Basic Equations of Fluid Mechanics
 2.2 Some Thermodynamics
 2.3 The Linear Wave Equation
3 Acoustic Waves
 3.1 Introduction
 3.2 Preliminaries: Complex Notation
 3.3 Acoustic Waves from Fluid Mechanics
 3.4 Wave Equation Solutions in Cartesian Coordinates
 3.5 Energy, Power and Intensity
 3.6 Energy
 3.7 Spherical Waves
 3.8 A Simple Source
 3.9 Dipole Source
 3.10 More on Units
4 Ocean Acoustics and More on Sound Transmission
 4.1 Bottom Loss: Reflection and Transmission
 4.2 Ocean Acoustic Environment
 4.3 Attenuation
 4.4 Scattering and Reverberation
 4.5 Ambient Noise
5 Sonar Equation
 5.1 Introduction
 5.2 Detection Threshold and ”ROC” Curves
 5.3 Sonar Equation

6 The Wave Equation for Sound Propagation in the Ocean

7 Some Simple Array Processing
Contents

1 References 5
1.1 General Fluid Dynamics 5
1.2 Books on Waves 5
1.3 Mathematical Reference Books 6

2 Linear Surface Waves 7
2.1 Governing Equations and Boundary Conditions 7
2.1.1 Boundary Conditions 11
2.2 Wave Dispersion 17
2.2.1 Linear waves in water of constant depth 17
2.2.2 Velocity and pressure fields 25
2.2.3 Lagrangian motion of the fluid: particle trajectories 26
2.2.4 Homework No. 1 29
2.2.5 Wave modulation and the group velocity 30
2.2.6 Wave energy and the group velocity 31
2.3 Dispersion of an Initial Disturbance 34
2.3.1 Long-time response to an initial disturbance: general results and approximations 34
2.3.2 The example of gravity waves on deep water 35
2.3.3 Long-time response to an initial disturbance: more formal detailed results and approximations 36
2.3.4 Fourier transform solution 37
2.3.5 Method of stationary phase 39
2.3.6 Dispersion for large t 40
2.4 Homework 2 43
2.5 Nonlinear waves in shallow water 45
2.5.1 Example: The dam-break problem 47
2.6 Hydraulic Jumps 48
2.7 Wave distortion and breaking 50

3 Internal waves ... 55
 3.1 Formulation: Boussinesq Approximation 55
 3.2 Small-scale internal waves 59
 3.3 Energetics of small-scale internal waves 61
 3.4 Homework 3 .. 64
 3.5 Reflection of small-scale internal waves at a sloping bottom .. 65
 3.6 The modal structure of internal waves 68
 3.6.1 Example: N=constant 70

4 Informal notes on the Tsunami of December 26, 2004 73
 4.1 Introduction .. 73
 4.2 Linear long wave model 74
 4.2.1 Linear wave speed: phase speed 76
 4.2.2 Travel Time .. 76
 4.2.3 Water speed ... 76
 4.2.4 Wave Amplification in Shallow Water: Green’s law .. 77
 4.2.5 Precursor wave of depression 77
 4.2.6 Nonlinear effects 78