SIO 20 (Winter Quarter 2018)
The Atmosphere

Instructors: Joel Norris MESOM 327 858-822-4420 jnorris@ucsd.edu
Shang-Ping Xie MESOM 323 858-822-0053 sxie@ucsd.edu

Teaching Assistants: Jacob Morgan Vaughan Hall 113 jdmorgan@ucsd.edu
Sarah Shackleton Vaughan Hall 434 sshackle@ucsd.edu

Class Meeting Times and Location: TuTh 2:00-3:20 pm, Center Hall 113

Evening Review Session Meeting Times and Location: To be determined

Office Hours: Joel Norris by appointment
Shang-Ping Xie by appointment
Jacob Morgan TBD Galbraith 364
Sarah Shackleton TBD Galbraith 364

Email Communication: Any email sent to the instructors or teaching assistants should include SIO 20 in the subject line. Questions about course material should be asked in class, during office hours, or at a review session, not via email.

Course Description: This course is an introduction to weather and climate. After describing the basic structure of the atmosphere, we will explore how the local imbalance between incoming solar radiation and outgoing terrestrial radiation drives temperature differences, the development of clouds and precipitation, and atmospheric circulation at regional and global scales. Further topics include mid-latitude weather systems, forecasting, severe storms, and global climate change.

Grading Criteria: 30% homework, 25% midterm, 40% final exam, 5% participation (measured via clicker)

Textbook: Essentials of Meteorology: An Invitation to the Atmosphere by C. Donald Ahrens (either 7th edition or 6th edition)
The textbook is required, but used copies of the 7th edition or 6th edition can be obtained cheaply. The textbook is also on reserve at the UCSD library. You are welcome to use different editions, but note that page numbers for topics may be different.

Course Website: On UCSD TritonEd

Attendance Expectations: Students are expected to attend and participate in every lecture class. Review sessions are optional.
Clickers: **Clickers are required for this class** (the basic iClicker is fine). Register your clicker under “Tools” on the TritonEd SIO 20 website. Do not register on the iclicker.com website. Your response on clickers will not be graded. The primary purpose for using clickers is not to force attendance but instead to promote participation in class and your success in learning.

Reading: Educational research has demonstrated that students who read the material ahead of class learn more, perform better on exams, and earn higher grades. Think about how you would answer the questions at the end of each chapter, but it is not necessary to turn anything in.

Homework Exercises: **Homework exercises must be completed on time** and will be collected in class. If you must miss turning in homework due to an unavoidable emergency (e.g. serious illness), you must contact Prof. Norris within 24 hours of the homework due date to determine whether you can have an extension. You will be required to provide documentation, without which there will be no extension, and you will receive a zero for that assignment. Do not ask for a homework extension for any reason other than a dire emergency. Homework extensions are decided on a case-by-case basis and may involve something different than the original assignment. Students may collaborate on homework exercises so long as each student does his or her own work (i.e., no copying).

Examinations: There will be a midterm exam and a final exam. The exam format will be closed-book, closed-notes in multiple choice format. You will be accountable for understanding all material covered in lectures and provided on the course website. The midterm will be administered **in class on Tues Feb 13.** Put this on your schedule now. Graded exams may be viewed by appointment with Prof. Norris, but may not be taken home. No collaboration is allowed on the midterm or final exams.

Alternate exams: **There will be no alternate exams.** Make sure your class schedule has NO exam conflicts, including the final exam. If you must miss an exam due to an unavoidable emergency (e.g. serious illness), you must contact Prof. Norris within 24 hours of the missed exam to determine whether you are eligible for a make-up exam. You will be required to provide documentation, without which there will be no make-up exam, and you will receive a zero for that exam. Do not ask to reschedule an exam for any reason other than a dire emergency. Make-up exams are decided on a case-by-case basis.

Academic integrity:
Academic dishonesty undermines the hard work of all students in the class who take responsibility for their learning. Academic dishonesty is incompatible with science and the search for truth. It will not be tolerated, and any student caught engaging in academic dishonesty will fail the course. Academic dishonesty includes:
- clicking for another student
- copying from another student’s homework or exam
- cheating on an exam

All exams will be closed-book and closed-notes, so all personal materials must be stowed under your seat. Because all exams are required for satisfactory completion of this course, any student caught cheating on an exam may receive a failing grade for the course. He or she may also be suspended from UCSD.
<table>
<thead>
<tr>
<th>Date</th>
<th>Instructor</th>
<th>Topic</th>
<th>Reading</th>
<th>HW/Exam</th>
</tr>
</thead>
</table>
| Tu 1/9 | Both | Introduction to the Atmosphere
key concepts: composition, vertical structure, weather, recent climate events | Ed7: 4-21, 26-27
Ed6: 4-20, 24-25 | |
| Th 1/11| Norris | Atmospheric Radiation
key concepts: electromagnetic radiation, wavelength, blackbody, emission, absorption, transmission, greenhouse effect | Ed7: 35-42, 55-57
Ed6: 34-41, 54-55 | |
| Tu 1/16| Xie | Temperature, Heat Transfer
key concepts: heat, latent heat, pressure, Earth’s energy balance | Ed7: 30-35, 43-46, 55-57, 158-161
Ed6: 28-33, 41-46, 54-55, 150-153 | |
| Th 1/18| Xie | Seasonal and Daily Cycles
key concepts: Earth’s orbit, equinox, solstice, annual range, nighttime cooling | Ed7: 46-57, 60-64, 68-73, 81-83
| Tu 1/23| Norris | Water Cycle and Humidity
key concepts: evaporation, condensation, saturation, vapor pressure, absolute humidity, relative humidity | Ed7: 86-94, 119-121
Ed6: 84-92, 113-115 | HW 1 due |
| Th 1/25| Norris | Dew, Fog, and Clouds
key concepts: dew point, condensation nuclei, haze, fog, cloud types, satellite images | Ed7: 98-121
Ed6: 96-115 | HW 1 returned |
| Tu 1/30| Norris | Cloud Development
key concepts: stability, instability, conditional instability, convection, orographic uplift, rain shadow | Ed7: 124-134, 153-155
Ed6:118-127, 146-147 | |
<table>
<thead>
<tr>
<th>Day</th>
<th>Instructor</th>
<th>Topic</th>
<th>Key Concepts</th>
<th>Ed7</th>
<th>Ed6</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th 2/01</td>
<td>Norris</td>
<td>Precipitation</td>
<td>key concepts: collision and coalescence, Bergeron process, ice nuclei, accretion, precipitation types</td>
<td>134-155</td>
<td>128-147</td>
<td></td>
</tr>
<tr>
<td>Tu 2/06</td>
<td>Xie</td>
<td>Atmospheric Pressure</td>
<td>key concepts: Sea-level pressure, isobaric maps, pressure gradient force, Coriolis force</td>
<td>158-169, 182-183</td>
<td>150-162, 173-175</td>
<td>HW 2 due</td>
</tr>
<tr>
<td>Th 2/08</td>
<td>Xie</td>
<td>Wind and Regional Circulation</td>
<td>key concepts: geostrophic balance, cyclone, surface friction, convergence, scales of motion, thermal circulation, sea breeze, Chinook wind</td>
<td>170-183, 186-198, 219-221</td>
<td>162-175, 178-184, 186-193, 209-211</td>
<td>HW 2 returned</td>
</tr>
<tr>
<td>Tu 2/13</td>
<td>Xie</td>
<td>Midterm Exam</td>
<td></td>
<td></td>
<td></td>
<td>Midterm</td>
</tr>
<tr>
<td>Tu 2/20</td>
<td>Xie</td>
<td>Atmosphere-Ocean Interactions</td>
<td>key concepts: ocean currents and upwelling, El Nino, Southern Oscillation, Teleconnections, climate prediction</td>
<td>210-221</td>
<td>202-211</td>
<td></td>
</tr>
<tr>
<td>Th 2/22</td>
<td>Norris</td>
<td>Air Mass, Fronts, and Weather</td>
<td>key concepts: air mass, warm front, cold front, occluded front</td>
<td>224-244, 254-255</td>
<td>214-233, 242-243</td>
<td>HW 3 due</td>
</tr>
<tr>
<td>Tu 2/27</td>
<td>Norris</td>
<td>Cyclone Development, Forecasting</td>
<td>key concepts: mid-latitude cyclones, jet stream, numerical models, chaos</td>
<td>244-255, 258-269</td>
<td>233-243, 246-260</td>
<td>HW 3 returned</td>
</tr>
<tr>
<td>Date</td>
<td>Instructor</td>
<td>Topic</td>
<td>Key Concepts</td>
<td>Reading Ed.</td>
<td>HW Due</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>--</td>
<td>---</td>
<td>-------------------</td>
<td>-----------------------</td>
<td></td>
</tr>
<tr>
<td>Th 3/01</td>
<td>Norris</td>
<td>Severe Weather</td>
<td>different types of thunderstorms, gust front, microburst, squall line, lightning, tornadoes</td>
<td>Ed7: 288-318, 329-331, Ed6: 274-301, 309-311</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th 3/15</td>
<td>Both</td>
<td>Review Session</td>
<td></td>
<td></td>
<td>Final</td>
<td></td>
</tr>
<tr>
<td>Th 3/22</td>
<td>Xie</td>
<td>Final Exam</td>
<td></td>
<td></td>
<td>Final</td>
<td></td>
</tr>
</tbody>
</table>