SIO 20 (Winter Quarter 2019)
The Atmosphere

Instructor: Joel Norris MESOM 327 jnorris@ucsd.edu
Teaching Assistants: Dillon Amaya MESOM 269 djamaya@ucsd.edu
Assistants: Sarah Shackleton Vaughan 434 sshackleton@ucsd.edu

Class Meeting Times and Location: TuTh 2:00-3:20 pm, Warren Lecture Hall 2005

Discussion Section Meeting Times and Locations:
1 – Mon 5:00-5:50 pm, HSS 1128A
2 – Mon 6:00-6:50 pm, HSS 1128A
3 – Wed 2:00-2:50 pm, CENTR 217A
4 – Wed 3:00-3:50 pm, WLH 2112

Office Hours with Instructor or Teaching Assistants: by appointment

Email Communication: Any email sent to the instructors or teaching assistants should include SIO 20 in the subject line. Questions about course material should be asked in class, in a discussion section, or during office hours, not via email.

Course Description: This course is an introduction to weather and climate. After describing the basic structure of the atmosphere, we will explore how the local imbalance between incoming solar radiation and outgoing terrestrial radiation drives temperature differences, the development of clouds and precipitation, and atmospheric circulation at regional and global scales. Further topics include mid-latitude weather systems, forecasting, severe storms, and global climate change.

Grading Criteria: 30% homework, 25% midterm, 40% final exam, 5% participation (measured via clicker in lecture class)

Textbook: Weather: A Concise Introduction by Gregory Hakim and Jerome Patoux
The textbook is required, but it is relatively inexpensive. The textbook is placed on reserve at the UCSD library.

Course Website: On UCSD TritonEd

Attendance Expectations: Students are expected to attend and participate in every lecture class. Up to 5% extra credit will be provided for attendance and participation in discussion sections.

Clickers: Clickers are required for this class (the basic iClicker is fine). Register your clicker under “Tools” on the TritonEd SIO 20 website. Do not register on the iclicker.com website. Your response on clickers will not be graded. The primary purpose for using clickers is not to force attendance but instead to promote participation in class and your success in learning.
Reading: Educational research has demonstrated that students who read the material ahead of class learn more, perform better on exams, and earn higher grades.

Homework Exercises: Students may collaborate on homework exercises so long as each student does his or her own work (i.e., no copying). **Homework exercises must be completed on time** and will be collected in class. If you must miss turning in homework due to an unavoidable emergency (e.g. serious illness), you must contact Prof. Norris within 24 hours of the homework due date to determine whether you can have an extension. You will be required to provide documentation, without which there will be no extension, and you will receive a zero for that assignment. Do not ask for a homework extension for any reason other than a dire emergency. Homework extensions are decided on a case-by-case basis and may involve something different than the original assignment. Graded homework exercises will be returned in the following discussion section.

Examinations: There will be a midterm exam and a final exam. The exam format will be closed-book, closed-notes in multiple choice format. You will be accountable for understanding all material covered in lectures, in the readings, and provided on the course website. The midterm will be administered in class on **Thursday February 14**. Put this on your schedule now. Graded exams may be viewed by appointment with Prof. Norris but may not be taken home. No collaboration is allowed on the midterm or final exams.

Alternate exams: **There will be no alternate exams.** Make sure your class schedule has NO exam conflicts, including the final exam. If you must miss an exam due to an unavoidable emergency (e.g. serious illness), you must contact Prof. Norris within 24 hours of the missed exam to determine whether you are eligible for a make-up exam. You will be required to provide documentation, without which there will be no make-up exam, and you will receive a zero for that exam. Do not ask to reschedule an exam for any reason other than a dire emergency. Make-up exams are decided on a case-by-case basis.

Academic integrity:
Academic dishonesty undermines the hard work of all students in the class who take responsibility for their learning. Academic dishonesty is incompatible with science and the search for truth. It will not be tolerated, and any student caught engaging in academic dishonesty will fail the course. Academic dishonesty includes:

- clicking for another student
- copying from another student’s homework or exam
- cheating on an exam

All exams will be closed-book and closed-notes, so all personal materials must be stowed under your seat. Because all exams are required for satisfactory completion of this course, any student caught cheating on an exam may receive a failing grade for the course. He or she may also be suspended from UCSD.
<table>
<thead>
<tr>
<th>Date</th>
<th>Topics and key concepts</th>
<th>Reading</th>
<th>HW/Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tu 1/8</td>
<td>Weather Measurements
temperature, pressure, wind, precipitation, station model, vertical structure</td>
<td>pp. 1-16, 47-49</td>
<td>HW 1 topic</td>
</tr>
<tr>
<td>Th 1/10</td>
<td>Weather Stations, Weather Maps, Radar
surface maps, upper-level maps, ridges and troughs, types of fronts, radar</td>
<td>pp. 14-29, 168-171</td>
<td>HW 1 topic</td>
</tr>
<tr>
<td>Tu 1/15</td>
<td>Atmospheric Composition, Heat Transfer
atmospheric gases, aerosols, sources and sinks, conduction and convection, advection</td>
<td>pp. 42-53</td>
<td>HW 1 topic</td>
</tr>
<tr>
<td>Th 1/17</td>
<td>Radiation, Satellite Imagery, Cloud Types
electromagnetic radiation, blackbody, emission, absorption, transmission, scattering, reflection, types of satellite images, types of clouds, halo, rainbow</td>
<td>pp. 53-64, 29-41, 113-116, 124-125</td>
<td>HW 1 topic</td>
</tr>
<tr>
<td>Tu 1/22</td>
<td>Radiation, Weather, and Climate
greenhouse effect, clouds, radiation imbalance, diurnal and seasonal cycle, land/ocean contrast</td>
<td>pp. 61-74</td>
<td>HW 2 topic</td>
</tr>
<tr>
<td>Th 1/24</td>
<td>Water and Humidity
evaporation, condensation, saturation, vapor pressure, absolute humidity, relative humidity, dew point</td>
<td>pp. 75-89</td>
<td>HW 2 topic</td>
</tr>
<tr>
<td>Tu 1/29</td>
<td>Cloud Formation
nucleation, radiative and adiabatic cooling, fog and cloud, dry and moist adiabatic lapse rate, orographic lifting, rain shadow</td>
<td>pp. 90-102</td>
<td>HW 2 topic</td>
</tr>
<tr>
<td>Th 1/31</td>
<td>Convection and Clouds
stability, instability, conditional instability, convection, clouds</td>
<td>pp. 102-112</td>
<td>HW 2 topic</td>
</tr>
<tr>
<td>Tu 2/05</td>
<td>Precipitation
collision and coalescence, Bergeron process, ice nuclei, accretion, types of precipitation</td>
<td>pp. 117-123</td>
<td>HW 3 topic</td>
</tr>
<tr>
<td>Date</td>
<td>Topic</td>
<td>Pages</td>
<td>HW Due</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------------------------</td>
<td>-----------------</td>
</tr>
</tbody>
</table>
| Th 2/07| Pressure and Wind

pressure gradient force, Coriolis force, geostrophic wind, gradient wind, cyclonic and anticyclonic wind, friction, trajectories | pp. 126-139 | HW 3 topic, Midterm topic |
| Tu 2/12| Local Wind Systems

sea breeze, mountain/valley breeze, katabatic wind, Santa Ana wind | pp. 128-130, 138-144 | HW 3 topic |
| Th 2/14| Midterm Exam | | Midterm |
| Tu 2/19| Atmospheric Circulation and Climate

global patterns of temperature, precipitation, pressure, and wind, three-cell model, monsoon, El Niño, teleconnections | pp. 145-166 | HW 4 topic |
| Th 2/21| Air Mass, Fronts, and Weather

air mass, warm front, cold front, occluded front, convergence and divergence, midlatitude cyclone development | pp. 167-187 | HW 4 topic, HW 3 due |
| Tu 2/26| Severe Weather

thunderstorm types, gust front, microburst, squall line, lightning, tornadoes | pp. 188-200 | HW 4 topic |
| Th 2/28| Tropical cyclones

geographical distribution of tropical cyclones, structure, development, and dissipation | pp. 201-212 | HW 4 topic |
| Tu 3/05| Forecasting

probability and uncertainty, numerical models, initial conditions, ensemble, chaos | pp. 213-226 | Final topic |
| Th 3/07| Air Pollution and Climate Change

smog, particulates, adverse weather conditions and topography, radiative forcing, feedbacks, effects of global warming on circulation and precipitation | pp. 227-243 | Final topic, HW 4 due |
| Tu 3/12| Past Climate Change

climate proxies, ice age, Milankovitch cycles, climate feedback | pp. 235-236 | Final topic |
| Th 3/14| Review Session | | |
| Th 3/21| Final Exam | | Final |