Linear Ocean Waves

SIOC 211A Section 921976
Professors Myrl Hendershott and Falk Feddersen
mhendershott@ucsd.edu, ffeddersen@ucsd.edu
Phone: 858.534.4345
Office: Sverdrup (MH) and DSD West (FF) Meetings
Class: Monday/Wednesday time 12:30-13:50 : IGPP 4301 Revelle Conference Room
Office Hours: Friday 10am

Description Most of the class is concerned with linear wave theory as it applies to the ocean. The emphasis is on gravity waves of various types but other waves will also be discussed. The course will begin with an introduction/review of the wave equation and relevant principles that should be familiar from Fourier analysis. The class will principally draw on two sets of lecture notes (see below). In addition, sections of various books will be assigned reading. Lectures will be at the level of SIOC 214 (fluids) and SIO 203A (math A) and make use of material covered in both. You will also make use of tools developed in data analysis.

Course Requirements Students should enroll in four (4) units. First year students should register as letter. Others can register as S/U. Students are expected to complete all the assigned homework, quizzes, projects, and a final exam. There will be regularly assigned homework. Homework is expected to be done in LaTeX. There will be occasional short class quizzes as with GFD. There will be a short quiz due on the first day of class that does not count toward your grade. There will be two projects on surface gravity and internal waves with a goal to either confirm or reject the theoretical constructs you're learning. The final grade will be based 1/2 on problem sets (HW + quizzes), 1/4 on projects and 1/4 on final exam.

Syllabus

1. 7-Jan (FF): Classic Wave Equations: Linear superposition, plane waves, phase speed, standing vs. propagating (FF: Chapter 1)
2. 9-Jan (MH): Surface Gravity Waves A. Linear Derivation, Disperson Relationship (FF: Chapter 2, MCH: 1.1-1.3, 3.1-3.5, KUNDU: 7.1, 7.2)
3. 14-Jan (FF): Surface Gravity Waves B. Flux-conservation equations, wave energy, energy flux, group velocity (YOUTUBE: Waves across the Pacific, FF Chapter 3, MCH 3.8, KUNDU 7.5), (PROJECT 1)
4. 16-Jan (FF): Surface Gravity Waves C. Dispersion, group velocity, stationary phase (FF Chapter 4 MCH: 1.4 and 1.5, KUNDU 7.5)
5. 21-Jan: MLK Holiday
6. 23-Jan (FF): Surface Gravity Waves D: Ray theory, Snells law (FF: Chapter 5)
7. 28-Jan (MH): Acoustic Waves A. Perfect fluid and derivation of acoustic wave equation (FF: Chapter 5)
8. 30-Jan (MH): Acoustic Waves B. Energy conservation, reflection, transmission (FF: Chapter 6)
9. 4-Feb (FF): Perfect fluid and Boussinesq approximation (FF: 5.1-5.2, Chapter 7, KUNDU 1.8,1.9, 15.2)
10. 6-Feb (FF): Internal Waves A. Wave equation derivation, solutions and dispersion relationship (FF Chapter 8, KUNDU 7.8, MCH: 4.1 and 4.2, Pedlosky Waves Lecture 7)
11. 11-Feb (FF): Internal Waves B. Energy conservation (FF: Chapter 9)
12. 13-Feb (MH): Internal Waves C. Normal modes (FF: Chapter 10, MCH 4.3 PROJECT 2)
13. 18-Feb President’s Day Holiday
14. 20-Feb (MH): Internal Waves D. Ray Tracing with non-constant N and Reflection on a slope (FF: Chapter 11)
15. 25-Feb (FF): Internal Waves E. Combined Internal and Surface Gravity Waves (FF: Chapter 12)
16. 27-Feb (MH): Linear shallow water equations: Derivation (FF: Chapter 13)
17. 4-Mar (MH): Linear shallow water equations no rotation. (FF: Chapter 14)
18. 6-Mar (MH): Linear shallow water equations with Rotation A. inertial-gravity waves, Kelvin waves, tides (FF: Chapter 15)
19. 11-Mar (MH): Linear shallow water equations with Rotation B. Rossby Waves
20. 13-Mar: Synthesis/Review

Lecture notes
The two principal lecture note sources are the following

- Feddersen Wave Lecture Notes (21 Jan 2019 version, Ch 1-10 good, not final, denoted FF above)
- Myrl’s Wave Lecture Notes by Chapman and Mallanote-Rizzoi (denoted MCH above)

Other Books These books that have relevant material in them. These include

- Kundu, Cohen, Dowling, Fluid Mechanics: Chapter 7 on Gravity Waves (same book as SIOC 214 - denoted KUNDU)
- Pedlosky, J. Waves in the Ocean and Atmosphere. Introduction to Wave Dynamics. (in class reserves)
- Vallis, Atmospheric and Oceanic Fluid Dynamics, Electronic Resource (same book as SIOC 212A - denoted Vallis)
- Rick Salmon's Undergraduate Waves Textbook is also a nice resource. It is light on fluid dynamics but strong on inspiration and Fourier analysis
- Mei, CC, The Applied Dynamics of Surface Gravity Waves (in CCS basement). Note that this book is also available electronically from UCSD library: E-BOOK
• Gill A, Atmosphere/Ocean Dynamics. Available electronically from UCSD library E-BOOK and direct from PUBLISHER
• Pedlosky, J. Geophysical Fluid Dynamics (should be in course reserves)
• Myrl’s chapter on Ocean Tides
• Lighthill, Waves in Fluids (in class reserves)
• Whitham, Linear and Nonlinear waves (in class reserves)
• Buhler, Oliver, Waves and Mean Flows E-BOOK on UCSD network

YOUTUBE VIDEOS AND WEBSITES

• MIT Opencourseware Lecture 4.5 on Evolution of a Slowly Varying Wave Packet
• MIT Opencourseware Lecture 4.6 on Evolution of a Slowly Varying Wave Packet
• Stormsurf Wave Model Web Site
• CDIP Web Site
• Waves Across the Pacific
• Internal Waves Generated from a cylinder: VIDEO 1, VIDEO 2
• Internal Wave Beam Generation on a Slope VIDEO
• Kraig Winters (SIO): Internal Tide impinging on a slope: Full nonlinear solutions Kraig winters lab
• Linear internal wave generation from seamount: VIDEO
• Internal Tide Generation Luzon Strait YOUTUBE

BACKGROUND TO FOURIER ANALYSIS

• Signals and Systems by Oppenheimer and Willsky. This is the best intro book on Fourier particularly the chapter on ”Fourier Analysis for Continuous Time Signals and Systems”.
• MIT CourseWare on Signals and Systems: In particular see the lectures 7, 8, 9 at https://ocw.mit.edu/resources/res-6-007-signals-and-systems-spring-2011/lecture-notes/
• YOUTUBE playlist of MIT course lectures

PAPERS

Surface Gravity Waves

• Okihiro et al., Excitation of Seiche Observed in a Small Harbor, JGR, 1993.

Ocean Acoustic Waves

Internal Waves

- Nikurashin and Ferrari, Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean, *Geophysical Research Letters*, 2011.
- Alford The formation and fate of internal waves in the South China Sea *Nature* 2015 (super nonlinear waves)

If you have any questions or comments, please contact me at falk@coast.ucsd.edu.