T: March 31: Introduction, class objectives, and decide on class topics and presenters, Introduction to the global observing system, and Example: Bryden Nature 2005

Subtropics
Th: April 2:
 Agulhas Current (Lynne) (Beal et al., JPO 2015)

T: April 7:
 a) (Gulf Stream) Western boundary current “tight recirculation gyres” (Hayden) (Richardson, JMR 1985)
 b) Ekman spiral and transport (Youran) (Chereskin and Roemmich, JPO 1991)

Th: April 9
 California Current (Mitchell) (Auad et al., PiO 2011)

T: April 14:
 Kuroshio (Karen) (Jayne et al., DSR 2009)

Th: April 16:
 Sverdrup balance (Monica)

Tropics
T: April 21
 Ocean circulation and El Niño (Hayden)

Th: April 23
 Geostrophy near the Equator (Youran)

High latitudes
T: April 28 (NOTE DOUBLE TOPICS)
 Large scale freshwater cycles of the Arctic (Mitchell)
 Southern Ocean surface layer under seasonal ice (Karen)

Th: April 30
 AABW formation (Monica)

T: May 5
 Ocean forced glacial melting (Hayden)

Overturning circulation and abyssal circulation
Th: May 7
 Ocean Mixing (Youran)

T: May 12
 Deep transport from S. Pacific via Samoan Passage (Mitchell)

Th: May 14
 North Atlantic heat transport (Karen)

T: May 19
 Eddies in the ocean (Monica)

Global change

Th: May 21
 Global Ocean Warming (Hayden)

T: May 26:
 Sea level rise (Youran)

Th: May 28:
 Sea ice changes (Mitchell)

T: Jun 2
 Glacial-interglacial variations of the MOC (Karen)

Th: Jun 4
 Deep ocean warming (Monica)

June 8-12: Optional meeting during finals week to prep for written/orals

Data:

Argo
 Repeat Hydrography
 Velocity - LADCP
 Tracer data
Satellite observations: SST/SSH/SSC
Moorings
 Modals and reanalysis products
XBT program
 Surface drifter program
Microstructure measurements
Wave moorings