EARTH SECTION

2017 ANNUAL REPORT SCRIPPS INSTITUTION OF OCEANOGRAPHY

SECTION
The Earth Section of the Scripps Institution of Oceanography includes researchers whose primary area of study is the solid Earth, including ice. Many of them have provided reports, included here in alphabetical order, summarizing their research over the past year. These descriptions aim to be accessible to a broad scientific audience. We hope that this overview provides useful insights into current Section research, supplementing information available on Scripps Scholars website scrippsscholars.ucsd.edu.

The research done by the members of the Earth Section spans topics in geology, geophysics, chemistry, biogeosciences, environmental archeology, as well as climate science and polar processes. This research includes observation, measurements, and collection of samples and data on global, regional, and local scales, at sea and onshore, and using satellite remote sensing. Extensive laboratory work often accompanies these mapping/sampling programs, while theoretical and numerical modeling guide data interpretation and the design and implementation of field experiments.

Thanks to Jennifer Matthews for her efforts in compiling and producing this report.

Donna Blackman, Head, Earth Section

Awards and Honors
Cathy Constable American Association for the Advancement of Science Fellow
Helen Fricker American Geophysical Union Fellow
Duncan Carr Agnew,
Lihini Aluwihare, Professor*
Andreas Andersson, Associate Professor
Laurence Armi, Professor*
Gustaf Arrhenius, Professor Emeritus*
Jeff Babcock, Academic Administrator*
George Backus, Professor Emeritus*
Jeffrey Bada, Research Professor Emeritus*
Katherine Barbeau, Professor
Jon Berger, RTAD Research Scientist
Donna Blackman, Research Scientist
Yehuda Bock, Distinguished Research Scientist
Adrian Borsa, Assistant Professor
Kevin Brown, Professor
James Brune, Professor Emeritus*
Steven C. Cande, RTAD Research Professor*
Paterno Castillo, Professor
C. David Chadwell, Research Scientist*
Christopher Charles, Professor*
Emily Chin, Assistant Professor
Catherine Constable, Professor*
Steven Constable, Professor
Geoffrey Cook, Associate Teaching Professor*
Joseph Curray, Professor Emeritus*
J. Peter Davis, Specialist
James Day, Associate Professor
Catherine Degroot-Hedlin, Research Scientist
Leroy Dorman, Professor Emeritus
Neal Driscoll, Professor
Matthew Dzieciuch, Project Scientist
Peng Fang, RTAD Specialist*
Yuri Fialko, Professor
Robert P. Fisher, Emeritus Research Scientist*
Helen Amanda Fricke, Professor
Jeffrey Gee, Professor*
Jade d’Alpoim Guedes, Assistant Professor
Jennifer Haase, Associate Research Scientist*
Alistair Harding, Research Scientist*
Richard Haubrich, Professor Emeritus*
James Hawkins, Professor Emeritus*
Michael Hedlin, Research Scientist
David Hilton, Professor
Glenn Ierley, Professor Emeritus*
Miriam Kastner, Distinguished Professor
Deborah Lyman Kilb, Project Scientist
Gabi Laske, Professor-in-Residence
Peter Lonsdale, Professor*
Gunter Lugmair, RTAD Research Scientist*
Douglas J. Macdougall, Professor Emeritus*
Todd Martz, Associate Professor*
Guy Masters, Distinguished Professor
Bernard Minster, Distinguished Professor
Walter Munk, RTAD Professor
Richard Norris, Professor
John Orcutt, Distinguished Professor*
Robert L. Parker, Professor Emeritus*
Anne Pommier, Assistant Professor
William Riedel, Emeritus Research Scientist*
Isabelle Rivera-Collazo, Assistant Professor*
David Sandwell, Distinguished Professor
Annika Sanfilippo-Howard, RTAD Specialist
John G. Sclater, Distinguished Professor*
Peter Shearer, Distinguished Professor
Alex Shukolyukov, Project Scientist*
Len Smka, Professor of Practice
Hubert Staudigel, RTAD Research Scientist*
David Stegman, Associate Professor*
Karen Stocks, Director, Geologic Data Center
Lisa Tauxe, Distinguished Professor
Frank Vernon, Research Scientist
Jane Willenbring, Associate Professor
Peter Worcester, RTAD Research Scientist
Mark Zumberge, Research Scientist

* no annual report available
RTAD = retired with active research program
Research Interests: Crustal deformation measurement and interpretation, Earth tides, Southern California seismicity.

We have long used long-base laser strainmeters to collect continuous deformation data at locations close to the two most active faults in Southern California. Pinyon Flat Observatory (PFO, operating since 1974) is 14 km from the Anza section of the San Jacinto fault (2-3 m accumulated slip since the last large earthquake) and Salton City (SCS, since 2006) within 15 km of the same fault further SE. Two other sites (Cholame, or CHL, since 2008, and Durmid Hill, or DHL, since 1994) are within three km of the San Andreas fault: CHL, at the N end of the segment that ruptured in 1857, and DHL at the S end of the Coachella segment (4-6 m accumulated slip). Surface-mounted laser strainmeters (LSM’s), 400 to 700 m long and anchored 25 m deep, provide long-term high-quality measurements of strain unmatched anywhere else: though in geological settings ranging from weathered granite to clay sediments, the LSM’s record secular strain accumulation consistent with continuous GPS, something not otherwise possible. The LSM’s record signals from 1 Hz to secular; at periods less than several months, they have a noise level far below that of fault-scale GPS networks. We have recorded aseismic transients at CHL, DHL, and PFO. A recent interesting result was the detection at DHL of strain related to fault creep triggered by a distant teleseism: the Chiapas earthquake of September 7, 2017, a shallow (50 km) thrust event, magnitude 8.1, 3000 km away. Figure 1 shows the strain observed, which is notable in beginning after the peak dynamic strains. This may indicate that it was triggered on the San Andreas fault to the NW of the strainmeters (where it was recorded on creepmeters operated by Prof. Roger Bilham of the University of Colorado, though at low time resolution), subsequently propagating to the SE to create the delayed signal on the strainmeters. Another research project was observing the resonance associated with the ellipticity of the core-mantle boundary in the harmonic constants for the ocean tides. This is usually measured with observations of either the Earth’s nutations using ultraprecise measurements with radio telescopes. But, improbably, it can also be seen in a dataset collected with float gauges and tide poles, and processed by human computers. The resonance changes the ratio of the amplitude of two constituents of the ocean tide, to 96% of what it would otherwise be. We examined the compilation of ocean-tide harmonic constants prepared by the International Hydrographic Bureau between 1930 and 1980, which includes data back to 1848 and analyses back to the 1870’s. These data, though showing considerable scatter in this ratio, also clearly show the expected decrease—this effect could have been observed long before it actually was.
RECENT PUBLICATIONS

ANDREAS J. ANDERSSON
Associate Professor
aandersson@ucsd.edu, 858-822-2486

Research Interests: Dr. Andersson is the Principal Investigator of the Scripps Coastal and Open Ocean Biogeochemistry (SCOOPY) research laboratory (www.scoobyresearch.com). The SCOOPY lab investigates global environmental change owing to both natural and anthropogenic processes, and the subsequent effects on the function, role, and cycling of carbon in marine environments.

Current research projects are mainly concerned with the effects of climate change and ocean acidification on biogeochemical processes (e.g., primary production, respiration, calcification and CaCO₃ dissolution) in coral reefs and in near-shore coastal environments, which requires a fundamental understanding of the physical, chemical, and biological mechanisms and controls that regulate these processes. To address these questions the SCOOPY lab employs a combination of research approaches involving laboratory and mesocosm experiments, field observations, and numerical model simulations.

Research Activities 2017: During 2017 we have conducted field research in San Diego, Bermuda and Hawaii investigating natural variability and drivers of seawater carbonate chemistry and reef metabolism on different temporal and spatial scales. In Hawaii, we were able to collect extensive seawater chemistry data during a bleaching event in Kaneohe Bay, Hawaii, in October of 2015 and then during the subsequent recovery until February of 2017. Our preliminary results highlight how the reef transitioned to net heterotrophy and net CaCO₃ dissolution during the bleaching event, but rapidly recovered to autotrophy and net calcification within 6 months. These results illustrate the inherent resiliency of the Kaneohe Bay coral reef to an environmental disturbance, but raise questions on how much it can handle, as bleaching events will become more frequent and severe as a result of climate change. In Bermuda, we have focused on how inshore biogeochemical processes are linked to offshore processes such as seasonal blooms and mesoscale eddies, and ultimately larger scale oceanographic features linked to the North Atlantic Oscillation (NAO). As part of this project we collected more than 40 coral cores from the most common calcifiers across the Bermuda coral reef to evaluate how individual coral colonies’ calcification rates change as a function of environmental properties (Figure 2a). Preliminary observations based on seawater chemistry measurements suggest that reef
calcification was significantly elevated during years of negative winter NAO phases, but needs to be verified by analysis of the coral cores. In a related project, we showed based on a 2-year in situ study that coral colony (Figure 2b and 2c) and reef scale calcification rates were most strongly controlled by seasonal variations in temperature while the corals investigated appeared relatively insensitive to changes in seawater carbonate chemistry (Courtney et al., 2017). Finally, we have continued our efforts investigating the mechanisms and controls of CaCO₃ sediment dissolution and have through a new collaboration with Dr. Vicky Grassian in the chemistry department at UC San Diego started to explore the links between dissolution rates and the presence, composition, and quantity of organic compounds.

Collaborators: Some of our collaborators in 2017 included Drs. Rod Johnson, Nick Bates and Tim Noyes at the Bermuda Institute of Ocean Sciences (BIOS) investigating coral reef biogeochemistry in Bermuda; NOAA PMEL in Seattle, monitoring seawater CO₂ on the Bermuda coral reef; Dr. Eric DeCarlo at the University of Hawaii investigating the effect of coral bleaching and recovery on reef metabolism; Dr. Bradley Eyre at the Southern Cross University, Australia, studying the effect of ocean acidification on CaCO₃ sediment dissolution; Dr. Vicky Grassian at UCSD, studying the effects organic compounds on dissolution rates of CaCO₃ sediment grains.

RECENT PUBLICATIONS

Research in the Barbeau group focuses on the biogeochemical cycling of trace metals in marine systems. We study the ecological effects of trace elements as limiting or co-limiting micronutrients (or toxins); trace metal bioavailability to and cycling by marine microorganisms; and the chemistry of trace metals in seawater. This year, we published a study on the utilization of heme, a common intracellular form of iron, as a recycled iron source by heterotrophic marine bacteria. This work sheds light not only on the details of how iron is actively recycled in planktonic ocean communities, but also reveals new information about how phytoplankton-associated bacteria opportunistically take advantage of limited resources when their algal partners die (see Figure 3). An analogy to our work is found in terrestrial systems, where bacteria living within the root nodules of nitrogen-fixing legumes employ a specific heme uptake system to recycle iron from the abundant hemoprotein leghemoglobin when their plant hosts die. The existence of similar interactions in the iron-scarce marine environment was previously unknown.

RECENT PUBLICATIONS

JONATHAN BERGER
Emeritus Researcher RTAD
jberger@ucsd.edu, 858-534-2889

Research Interests: Global seismological observations, marine seismo-acoustics, geophysical instrumentation, deep ocean observing platforms, ocean robotics, global communications systems

We have proposed to continue development of an ocean bottom seismic observatory whose prime purpose is to meet the requirements of the Global Seismographic Network including the capability to deliver online seafloor seismic observations from the Earth's remote oceans in near real-time. Through the use of a wave glider, a transformative technology our concept for a Remote Ocean Online Seafloor Seismic Observatory (ROOSSO) is illustrated in Figure 4.

The proposed system will
1. Provide shielding of the seismometer from seafloor turbulence,
2. Provide continuous near real-time streaming of sensor data from seafloor to land with a latency of less than a few minutes,
3. Provide enough stored energy for at least a two-year service interval.

Meanwhile, I continued my analysis of the seismic and acoustic data collected during the OBSANP experiment in the deep ocean of the subtropical NE Pacific. The deep ocean acoustic floor (taken to be the pressure spectrum observed the few percent of the time when the overhead wind is small, ships are distant and marine life silent) has been measured across a 975 m vertical array anchored at 5048 m in the basin just north of the Murray fracture zone. From 1 to 6 Hz, the floor falls like f^{-7}, touching 3×10^{-9} Pa2 Hz$^{-1}$ at the upper end. From 40 to 800 Hz the floor falls like f^{-2} touching 3×10^{-9} Pa2 Hz$^{-1}$ at the upper end for the deepest sensor.

In the ship-dominated regime ($f > 6$ Hz) the acoustic floor rises about 15 dB up the array. As reported before, the energy is horizontally polarized. From analysis of a 150 m aperture sub-array at the sea floor, the beam width is less than the array resolution (8° at 75 Hz). The beam narrows as f^{-1} for higher frequencies. Furthermore, the power in the beam appears to fall more steeply with frequency than the omnidirectional spectrum, an effect possibly attributable to scattering. Events on the marine-atmosphere boundary layer radiate sound into the ocean. Above about 6 Hz ships are an important source of this sound, and their influence must be discounted in order to study the acoustic signal in this band radiated by windsea processes. The usual

Figure 4. ROOSSO System Concept.
The ocean bottom package sitting on the seafloor telemeters sensor data through the ocean column to a free-floating Ocean Surface Gateway (OSG) hovering above the Ocean Bottom Platform (OBP). The OSG re-transmits the data via satellite to the shore while it holds station over the OBP.
approach in studying acoustic “noise” has been to designate the observed spectrum at some frequency as ship-generated or wind-generated by its level, shape and, sometimes, vertical gradient. Here we analyze data from a vertical hydrophone array fortuitously positioned for three days beneath the center of an anticyclone from which there was virtually no windsea acoustic radiation.

RECENT PUBLICATIONS

DONNA BLACKMAN
Research Geophysicist
dblackman@ucsd.edu, 858-534-8813

Research Interests: Mantle flow, mineral deformation, and tectonic evolution along plate boundaries using marine geophysics and numerical modeling.

This year I continued research on mantle flow with anisotropic rheology and did some additional work on ocean crustal structure. I began serving a term as Earth Section Head for Scripps and continued as Secretary of the Green Foundation for Earth Sciences at IGPP. As NSF/OCE evolved their approach to providing access to Marine Seismic data acquisition and Ocean Bottom Seismometers, I worked with colleagues at Scripps and nationally, as ex-officio member of the Marine Seismic Research Oversight Committee, to discuss approaches that could fulfill needs while following the new approaches laid out by NSF/OCE.

To understand the feedbacks between deformation induced mineral alignment in the mantle and upper mantle flow pattern, my Cornell & CNRS colleagues and I link local viscosity solutions to a FEM calculation of regional flow. Local viscosity is determined throughout the model, based on the behavior of a mineral aggregate (a rock) with crystal preferred orientation (CPO) that develops as it deforms along a flow path from the base of the model to the given position in the simulated ocean spreading center region.

Figure 6. Model geometry (upper left) showing basic flow pattern (small green vectors) and temperature (color). Reference, 1st-iteration results (upper right) and full-coupled results (lower right) show flowpaths (gray lines) and CPO (pole figures: olivine a-axes throughout model; a-, b-, and c-axis concentrations contoured in a few locations), shaded by J Index, which quantifies the strength of the local CPO.
Through a series of numerical runs, we explored the rheologic effects of CPO and impacts on the pattern of flow and associated seismic signals. What was new this year is that we completed several more iterations (a few weeks runtime each) for cases where the olivine aggregates have power law stress:strain rate response. The new results confirmed our earlier conclusions, which were based on just a few iterations: anisotropic viscosity tensors associated with CPO characterize most of the model space and this directional dependence in strength impacts the pattern of upper mantle flow. For background asthenosphere viscosity of 10^{20} Pa s and a rigid lithosphere, the modification of the corner flow pattern is modest, but the changes could affect melt production rates. Stronger fabric is predicted below the ridge flanks than had been predicted with previously-published 1st-iteration models, where effects of CPO on rheology were ignored. The predicted SKS splitting is modestly different (~0.5 s) for oceanic plates less than 20 Myr old. Surface waves, predicted in collaboration with Gabi Laske, have twice the magnitude of Rayleigh wave azimuthal anisotropy for fully coupled models than for 1st-iteration models.

I began work linked to a project of Jeff Gee’s compiling recently-collected gravity data from Pito Deep- a tectonic window into fast-spread crust in the Pacific. The study combines the new, closely-spaced track data with prior, more typical underway survey data in the region. Part of the effort is to determine how best to process data that were collected at slow, ROV towing speeds. Initial work at sea by grad student Adrien Doran suggests that stable results should be obtainable, but additional analysis is required to determine data uncertainties for these acquisition conditions. Knowing the uncertainty level will be key for gauging how hard to push on density models as we try to improve the fit between predicted and observed data. Ultimately, the aim of the work is to better characterize the density distribution of the crust in, and immediately around, Pito Deep and to relate that to crustal formation and evolution processes.

Two new avenues developed as I was invited to join large, interdisciplinary teams to develop multi-year proposals on Planetary Ocean Worlds and Eritrea. The latter overlaps with my prior work since it would involve modeling mantle flow and melting, and almost certainly anisotropy, to try to match observations from proposed new geophysical and geologic data from the Gulf of Zula, north of Afar, where ocean spreading may just be initiating. The Ocean Worlds effort would be more of a departure from my past work, but would employ geophysical approaches I’ve applied previously to analyze Earth’s seafloor morphology and properties to assess the likelihood of fluid flow that could be associated with biogeochemical activity. That team is specifically designed to bring together (Earth) ocean and planetary experts from geophysics through to microbiologists, somewhat reminiscent of the Ridge 2000 ‘mantle to microbe’ goal.

RECENT PUBLICATION

YEHUDA BOCK
Distinguished Researcher and Senior Lecturer
Director, Scripps Orbit and Permanent Array Center (SOPAC)
ybock@ucsd.edu, 858-534-5292

Research Interests: GPS/GNSS, space geodesy, crustal deformation, early warning systems for natural hazards, seismogeodesy, GPS meteorology, data science, sensors

The SOPAC research group’s most recent focus is on use of space geodesy, seismology, and Lidar and UAV imaging to mitigate the effects of natural hazards on people and structures through improved early warning and rapid response to events such as earthquakes, tsunamis, volcanoes and severe weather. We approach our projects in a holistic manner from the design and deployment of geodetic and other sensors, real-time data collection and analysis, physical modeling and where applicable, communicating actionable information the “last mile” to emergency responders and decision makers during disasters. We maintain a database of high-rate GNSS and accelerometer measurements (Figure 7) for historical earthquakes, using the data for studies of early postseismic deformation and other applications. We also maintain a global archive of GNSS data, metadata and data products with accompanying IT infrastructure and database management system for the International GNSS Service (IGS) and the California Spatial Reference Center (CSRC) (Figure 8). The SOPAC group currently includes Peng Fang, postdoc Emilie Klein, graduate students Dara Goldberg, Dorian Golriz and Minghua Wang, Anne Sullivan, Maria Turingan, Matt Norenberg, Allen Nance and Songnian Jiang.

LOCAL TSUNAMI WARNING SYSTEM

Current tsunami warning systems for subduction zone earthquakes are limited to ocean basin-wide warnings. Although populations closest to the earthquake source are most vulnerable to devastation, there exists no adequate early warning system for local tsunamis, such as the 2004 Mw9.3 Sumatra-Andaman earthquake and tsunami that caused 250,000 deaths on the nearby island of Sumatra and the 2011 M9.0 Tohoku-oki, earthquake and tsunami with 12,000 casualties and severe damage to infrastructure in Sendai, Japan. The reason is that traditional tsunami warnings are dependent on offshore ocean buoys and teleseismic data making it difficult to obtain rapid estimates of magnitude and fault mechanism for local events. High-rate data from local near-source GNSS networks collocated with strong motion instruments (seismogeodesy—Figure 7) can be analyzed in real time to estimate coseismic displacement waveforms (dynamic and static). This allows for the detection of P-wave arrivals, rapid earthquake magnitude through scaling relationships, and fault mechanism and slip from fast CMT and static fault slip inversions, typically within 2-3

Figure 7. Advantages of seismogeodetic data for near-source monitoring, compared to GPS and seismic data alone. We are applying seismogeodesy to earthquake and local tsunami warning systems with NOAA’s National and Pacific Tsunami Warning Centers, and to structural health monitoring with the Jacobs School of Engineering and Qualcomm Institute on campus.

Figure 8. Sixteen-year daily GNSS displacement time series. Station HUNT is near the San Andreas fault near Parkfield. The detrended modeled displacements shows coseismic and postseismic deformation from the 2003 Mw6.5 San Simeon and 2004 Mw6.0 Parkfield earthquakes. The velocities are with respect to the global reference frame (ITRF2014).
minutes for the largest events, as input to tsunami warnings and inundation models. In the U.S., NOAA’s National and Pacific Tsunami Warning Centers in Alaska and Hawaii are responsible for tsunami warning in the Pacific Basin. SOPAC under a NASA project is working with NOAA to implement a seismogeodetic-based local tsunami warning system at the two centers.

GPS DISPLACEMENT TIME SERIES AND GEODETIC DATUMS

SOPAC estimates daily GPS displacement time series using the GAMIT/GLOBK software for global and regional networks with a focus on Western North America—the longest time series start in 1992 as part of the PGGA project a forerunner of the SCIGN and PBO projects. We model the time series for tectonic signals of interest, including interseismic, coseismic and postseismic deformation (Figure 8), and look for interesting transients such as subsidence and episodic tremor and slip (ETS). SOPAC is working with Caltrans on a new geodetic datum for California defined by the coordinates and velocities of about 900 continuous GPS stations in the state, at epoch 2017.5. The datum is the basis for precise spatial referencing according to California’s public resources code (previous epoch was 2011.00). In parallel we are researching the development of a dynamic datum for the state based on interpolation of true-of-survey-date daily coordinates to take into account the effects of tectonic motions and subsidence. These data are being used to georeference InSAR imagery in the Central Valley for subsidence studies as part of an ongoing project with David Sandwell and Xiaohua Xu.

RECENT PUBLICATIONS

ADRIAN BORSA
Assistant Professor
aborsa@ucsd.edu; 858-534-6845

Research Interests: Remote hydrology from GPS and GRACE. Satellite altimeter calibration/ validation and measurements of topographic change. Differential lidar techniques applied to problems in geomorphology and tectonic geodesy. Kinematic GPS for positioning, mapping, and recording transient deformation due to earthquakes, fault creep and short-period crustal loading. GPS multipath and other noise sources. Dry lake geomorphology.

My recent research involves the characterization of the hydrological cycle using crustal loading observations from GPS, in collaboration with SIO colleagues Duncan Agnew and Dan Cayan. Changes in water storage in lakes, aquifers, soil moisture, and vegetation results in elastic deformation of the crust that yields measurable vertical displacements of the surface. The seasonal signal from water loading has been extensively studied, but loading changes over longer periods are typically smaller and have not been broadly documented. Since 2013, however, drought in the western USA has caused rapid and widespread uplift of mountainous areas of California and the West. The vertical displacements from the drought are unprecedented in magnitude over the past decade of continuous GPS observations.

The drought uplift signal, which exceeds 15 mm at locations in the Sierra Nevada, is large enough to be obvious by inspection of GPS time series. We apply a seasonal filter derived from the econometrics literature (the Seasonal-Trend-Loess estimator) to completely remove the annual signal due to water loading and pumping, and we invert the filtered GPS position data to recover the spatiotemporal loading required to account for observed uplift. In the case of the current drought, our estimate of the accrued water deficit ranges up to 50 cm and totals 240 gigatons, equivalent to a 10 cm uniform layer of water over the land area east of the Rocky Mountains. Currently, we are extending our analysis to look at short-term changes in loading from individual storms, and we are investigating drought-induced Coulomb stress changes on all faults in the UCERF3 fault model.

My other primary area of research has been the calibration and validation of satellite altimeter measurements using a reference surface at the salar de Uyuni, Bolivia. In collaboration with SIO colleague Helen Fricker, I have led three expeditions to the salar de Uyuni (in 2002, 2009 and 2012) to survey the surface with kinematic GPS. We have established that the surface is both exceptionally flat (80 cm total relief over 50 km) and stable (< 3 cm RMS elevation change over a decade), while maintaining coherent...
geoid-referenced topography at wavelengths of tens of kilometers. In 2013, using our salar digital elevation model (DEM), I found and was able to identify the source of an inadvertent error in ICESat-1 processing that was the source of large shot-to-shot errors late in the mission period and that significantly changed ICESat-derived elevation change trends for the stable portions of the Greenland and Antarctic ice sheets.

Recently we have began to explore surface change at the salar using ALOS InSAR observations, with the goal of linking absolute GPS measurements with relative motions provided by InSAR to provide a continuous time series of surface displacement for calibration purposes. We have also expanded our cal/val activity to the CryoSat mission and are currently evaluating improvements between Baseline B and Baseline C datasets. Our ongoing interaction with the CryoSat mission team has led ESA to switch CryoSat from SARIN to LRM mode for all passes over the salar de Uyuni from 2015 onward, allowing us to provide a cross-calibration of elevations from these different operational modes.

RECENT PUBLICATIONS

Kramer, M., W. Holt, A. Borsa, (in review). "Tectonic Seasonal Loading Inferred from cGPS Measurements as a Potential Trigger for the 6.0 Magnitude South Napa Earthquake." *J. Geophysical Research: Solid Earth*

KEVIN M. BROWN
Professor
kmbrown@ucsd.edu, 858-822-4077, scripps.ucsd.edu/labs/brown

Research Interests: nanofilms- and the coupling between the evolution in porosity, permeability, and pore water chemistry in ultra-tight deep clay rich formations

This theme came out of early work in the Barbados accretionary wedge where we noticed strong interactions between smectite hydrate state and the state of stress (see Fitts and Brown, 1999). Basically, it appears that the effective mineral framework stressed cause dehydration and pore fluid freshening in smectite-rich formations. Such freshening was and still is being utilized to study fluid migration pathways. If generated at depth in natural systems this is scientifically significant for regions where smectite is an abundant hydrous-clay mineral. Water release directly impacts the fluid pressure/stress state, hydrology and mass balances in sedimentary basins and subduction systems. However, if these signals are generated during pore water extraction on a ship this is a big problem. It turns out that while it is a problem for water extraction during IODP drilling operations it is actually how the natural systems work that contain high surface phyllosilicates and may form a new area scientific study.

I am returning to and extending this work at the moment (see Brown et al., 2017) to also look at ultra-membrane filtration and isotopic fractionation effects. This is actually evolving into a broader interdisciplinary study of the nature of trapped nanofilms. Thin water films are ubiquitous in the shallow to intermediate depths in the earth (surface to mid crustal levels). I am looking at the connections between DLVO (named after Derjaguin, Landau, Verwey, and Overbeek) surface force theory, ultrafiltration, osmosis, pore fluid chemistry and hydrologic mass transport, nano-thin films, and poro-mechanics in natural systems (including frictional and earthquake physics effects). These coupled effects seem to apply quite strongly at shallow to moderate depths particularly in high surface area phyllosilicate dominated systems but I suspect start to evolve into new contact processes in the metamorphic regime. I am currently putting a proposal to address this general topic.

We show in Brown et al., (2017) that below 1–2km, there should be widespread ultrafiltration of migrating fluids in continental margin environments and implication for overpressuring. This work is primarily the work of experiments conducted in my laboratory with the basic concepts developed by myself and my student. We also included very necessary data such as the surface area measurements and porosity measurements that are derived from work by our colleagues. We were on an international cruise and are expected to include coauthors so the authorship is long. We show that >100MPa normal compression collapse pores below a few ion monofilm thicknesses. A reduction towards a single condensing/dehydrating ion monofilm occurs as stresses rise >100–200MPa and clay separations are reduced to <10–20Å. Thus, porosity in high mineral surface area systems only consists of double and single monofilms at depths below a few km leaving little room for either bulk water or the deep biosphere. The resulting semipermeable properties result in variable segregation of ions and charged isotopes and water during active flow. The ultrafiltration and ion dehydration processes are coupled in that both require the partial immobilization of ions.
between the charged clay surfaces. The general effect is to increase salinities in residual pore fluids at depth and freshen fluids expelled during consolidation. Cessation of nanofilm collapse to a near constant 17Å below 2km depth at Nankai supports the contention for the onset of substantial geopressuring on the deeper seismogenic fault. The properties of monofilm water, thus, have considerable implications for the deep-water properties of subduction zones generating major tremor and Mw 8+ earthquakes. Indeed, the combined effects of advective flow, ultrafiltration, diffusion, and diagenesis could provide a unifying explanation for the origins of overpressuring and pore water geochemical signals observed in many natural systems.

In most recent work (Brown and Poppee, 2017, reference below). I with my former Masters student have extended this work to include poro-mechanical effects. Thinning nanofilms trapped between high surface area phyllosilicate minerals directly control the contact and volumetric/porosity properties at shallow to mid-crustal levels. We show evidence that, once drained compaction has expelled bulk sea/pore water, opposing saline hydrated ion monofilms attached to charged mineral surfaces start to collapse into a single layer and begin to dehydrate releasing fresh, isotopically light water. Our one-dimensional consolidation tests additionally reveal that initially the nanofilm compression and ion dehydration is stable. Hydration forces increasingly resist nanofilm compression and porosity loss up to 97 ± 25 MPa. This is followed by accelerated nanofilm collapse as normal stress rise above ~100 MPa to our peak stress of 200 MPa. Extrapolated trends predict full film collapse and contact adhesion at ~240-350 MPa. We hypothesize the collapse relates to the onset of ion dehydration and a fundamental shift in the balance between the repulsive electrostatic and ion hydration forces and the attractive Van der Waal’s force. We hypothesize that the direct coupling that initiates between film thickness (<20-30 Å) and salinity of the trapped films means it is possible for the first time to predict deep salinity trends from borehole data or remotely gathered porosity velocity relationships. We expect these trapped evolving nanofilms to dominate the frictional, hydrologic, and geochemical contact properties of natural seismogenic faults as well as the general deep porosity evolution of all systems containing a substantial phyllosilicate component. Poro-mechanical responses and hydrologic driving mechanisms many have to be separated into a shallow nanofilm dominated contact regime and a deep dry contact regime. I am currently writing proposals to address the probable destabilizing effects of temperature on these contact nanofilms.

NANOFILMS REFERENCES

Brown, K. M. and Poepep, D., in prep; implications of trapped Nanofilms for coupled Poro-Mechanical and salinity responses of DEEP sediments and faults, *EPSL*
One of the topics that I worked on last year was the significant correlation between $^{176}\text{Hf}/^{177}\text{Hf}$ and $^{143}\text{Nd}/^{144}\text{Nd}$ in mid-ocean ridge basalts (MORB) and ocean island basalts (OIB), or the so-called Hf-Nd mantle array (Figure 12A), which has puzzled geochemists for more than three decades. A current consensus for the origin of the array is that the Lu/Hf and Sm/Nd of recycled sediments are thoroughly mixed or averaged during subduction [1,3]. This model, however, is incompatible with the heterogeneous Sr-Nd-Pb and noble gas isotope as well as trace element composition of oceanic basalts that clearly requires separate, distinct mantle sources. For example, the Sr-Nd-Pb isotopic spectrum of oceanic basalts is encased in an imaginary tetrahedron, the apices of which are defined by the proposed mantle end-members enriched mantle 1 (EM1), enriched mantle 2 (EM2) and high $^{238}\text{U}/^{204}\text{Pb}$ or μ (HIMU), which are purportedly derived from recycled crustal materials, and the geochemically depleted upper mantle source of MORB (DMM). Individual OIB suites are primarily binary mixtures of variable proportions of EM1, EM2 or HIMU and a common component in the focus zone (FOZO) inside the tetrahedron. Such a geometric configuration of the Sr-Nd-Pb isotopes clearly indicates that individual oceanic basalt suites evolve from different sources.

Detailed analysis of available data indicates that the origins of EM1 and EM2 end-members are key to the origin of the mantle array. Despite the significant correlation of EM1- and EM2-type lavas, which comprise the bulk of OIB and anchor the enriched (low $^{176}\text{Hf}/^{177}\text{Hf}$ and $^{143}\text{Nd}/^{144}\text{Nd}$) end of the Hf-Nd mantle array (Figure 12A), their $^{87}\text{Sr}/^{86}\text{Sr}$ and $^{143}\text{Nd}/^{144}\text{Nd}$ clearly have different linear arrays (Figure 12B). After combining the two diagrams to form the 3-D Sr-Nd-Hf isotope space, however, the EM1, EM2, HIMU and DMM end-members also define a tetrahedral configuration (Figure 12C). Moreover, similar tetrahedral configurations also occur in 3-D Sr-Hf-Pb (simply because of the significant $^{176}\text{Hf}/^{177}\text{Hf}$-$^{143}\text{Nd}/^{144}\text{Nd}$ correlation) and Nd-Hf-Pb as well as Pb-Pb-Pb isotope spaces (not shown). Individual OIB arrays also consistently trend toward FOZO inside all these tetrahedra. The coherent tetrahedral configuration of oceanic basalts in the various ternary permutations of Hf-Sr-Nd-Pb isotopes reinforces the notion that oceanic basalts have different sources. The major question then is can the distinct sources of EM1 and EM2 be reconciled with the Hf-Nd mantle array?

Figure 12. A. $^{176}\text{Hf}/^{177}\text{Hf}$ vs. $^{143}\text{Nd}/^{144}\text{Nd}$ (expressed in ε units) for Samoa (representing EM2), Pitcairn (EM1), St. Helena + Cook-Austral (HIMU) OIB and Rana Rahi plus Knipovich Ridge MORB (representing variable DMM types). Entire fields for MORB and OIB are shown for reference. Data are from the GEOROC database [http://georoc.mpch-mainz.gwdg.de/]. B. $^{87}\text{Sr}/^{86}\text{Sr}$ vs. $^{143}\text{Nd}/^{144}\text{Nd}$ (expressed in ε units) for the same data in Figure A. C. The 3-D Sr-Nd-Hf isotope tetrahedron for oceanic basalts. Inset in A. schematically represents the intersection of Hf-Nd (A.) and Sr-Nd (B.) isotope planes.

PATERNO CASTILLO
Professor
pcastillo@ucsd.edu, 858-534-0383

Research Interests: geochemistry and petrogenesis of magmas produced within and along divergent and convergent margins of tectonic plates; magmatic and tectonic evolution of continental margins; chemical geodynamics
An upper continental crust (UCC) -derived sediment source for the isotopic and trace element features of EM2-type OIB is well established, but the source of EM1-type OIB features is more problematic. The well-correlated $^{176}\text{Hf}/^{177}\text{Hf}$ and $^{143}\text{Nd}/^{144}\text{Nd}$ signatures of EM1 and EM2 suggest a common pedigree. As a complement to the EM2 source, I propose that sediment derived from mafic arc and oceanic intraplate volcanoes is the most likely source of EM1-type OIB. In contrast to UCC-derived sandy sediment that contains physically and chemically stable mineralogy including zircon and/or garnet, sediment derived from mafic arc basalt and intraplate oceanic basalt consists of high temperature minerals such as olivine and pyroxenes that normally turn to mud- or clay-rich fine fraction upon weathering. The UCC-derived and mafic lava-derived sediments can modulate the growth of $^{176}\text{Hf}/^{177}\text{Hf}$ and $^{143}\text{Nd}/^{144}\text{Nd}$ through time, producing the Hf-Nd mantle array. That both EM1 and EM2 sediment sources are predominantly land-derived is highly consistent with the $^{176}\text{Hf}/^{177}\text{Hf}$-$^{143}\text{Nd}/^{144}\text{Nd}$ compatibility between OIB and subducting terrigenous sediments and the terrigenous nature of the $^{176}\text{Hf}/^{177}\text{Hf}$-$^{143}\text{Nd}/^{144}\text{Nd}$ systematics of modern marine sediments.

An in-depth analysis of the geometry of the Sr-Nd-Hf isotope tetrahedron provides a complementary explanation for the Hf-Nd mantle array. The mantle array in the 2-D Hf-Nd isotope plane (Figure 12A) consists primarily of individual binary mixing arrays between enriched EM1 (Pitcairn OIB) and/or EM2 (Samoa OIB) and the bulk of depleted (i.e., high $^{176}\text{Hf}/^{177}\text{Hf}$ and $^{143}\text{Nd}/^{144}\text{Nd}$) MORB through FOZO. That is, the individual arrays of the bulk of OIB and bulk of MORB are nearly co-linear in the Hf-Nd plane. In the 2-D Sr-Nd isotope plane (Figure 12B), however, enriched EM1 and EM2 arrays diverge from a common, near-depleted composition that is FOZO, which together with the bulk of MORB assume a single array towards the depleted end. Notably, enriched EM1 and EM2 end-members plus the bulk of depleted MORB arrays are nearly coplanar and, thus, define an imaginary, triangular EM1-EM2-MORB plane. Oceanic basalts form a significant correlation (i.e., the mantle array) in the Hf-Nd plane because it intersects the inclined EM1-EM2-MORB triangular plane orthogonally (inset in Figure 12A), creating an almost linear, side view of the plane. The mantle array does not include all oceanic basalts as some MORB and DMM plot above the EM1-EM2-MORB plane, and the HIMU (e.g., St. Helena) and HIMU-type (e.g., Azores) OIB arrays intersect it at FOZO from below, most probably due to the low $^{176}\text{Hf}/^{177}\text{Hf}$ for a given $^{143}\text{Nd}/^{144}\text{Nd}$ of recycled ancient marine carbonates. The tetrahedral geometry is created by the locations of the mantle end-members in the 3-D Hf-Sr-Nd isotope space (Figure 12C).

THIS CONTRIBUTION WAS PUBLISHED AS
EMILY J. CHIN
Assistant Professor

e8chin@ucsd.edu, 858-246-0436

Research Interests: igneous & metamorphic petrology, high-temperature geochemistry, mantle petrology, geology and tectonics of the Western US

I am an igneous/metamorphic petrologist with a focus on mantle petrology, particularly, evolution of the lithosphere.

Recently, I'm expanding my research in interdisciplinary ways to couple geochemistry with microtexture to better understand the evolution of mantle rocks. Over the past year, I purchased and installed a state-of-the-art field emission SEM (housed in Nanoengineering). Just in October, we also installed an EDS and EBSD detector system that will allow coupled measurement of compositional and crystal orientation information on mineral and rock samples. We are still working on getting this lab up to full operational capabilities. My other laboratory (a small wet chemistry space in Sverdrup) is also still under construction.

As such, much of my past year’s research was spent collaborating with scientists at other institutions, as my lab and SEM come up to speed. I visited China University of Geosciences in Wuhan for a few weeks to work with Prof. Vincent Soustelle and Prof. Yongsheng Liu on an EBSD project involving North China Craton pyroxenites. I am also working with Lang Farmer (University of Colorado Boulder) on the deformation history of the Wyoming Craton mantle. I am also working with Anne Pommier and Kevin Brown, here at SIO, investigating volatile inventories in sedimentary rocks in the lower blueschist facies.

RECENT PUBLICATIONS
I currently have one paper in review in *Earth and Planetary Science Letters*; this paper analyzed literature data on deep crustal cumulates to constrain the origins of the calc-alkaline vs. tholeiitic magma series.

![Figure 13. The new field-emission SEM located in Nanoengineering. Capabilities include EDS, element mapping, and EBSD.](image-url)
STEVEN CONSTABLE
Distinguished Professor
sconstable@ucsd.edu, http://marineemlab.ucsd.edu, 858-534-2409

Research Interests: Marine EM methods, electrical conductivity of rocks

Steven Constable heads the SIO Marine Electromagnetic (EM) Laboratory at IGPP. The two main field techniques we use are controlled-source EM (CSEM) sounding, in which a deep-towed EM transmitter broadcasts energy to seafloor EM recorders, and magnetotelluric (MT) sounding, in which these same receivers record natural variations in Earth’s magnetic field. Both methods can be used to probe the geology of the seafloor, from the near surface to hundreds of kilometers deep, using electrical conductivity as a proxy for rock type. We have used these methods to study plate boundaries, marine gas hydrate, offshore geothermal prospects, hydrothermal venting and associated massive sulfides, offshore groundwater, and conventional oil and gas reservoirs.

This was a busy year in terms of data collection. In October 2016 we equipped an autonomous underwater vehicle (AUV) with our EM sensors and carried out a survey over a hydrothermal area off Japan that is thought to host seafloor sulphide deposits. Early in 2017 we recovered 38 of the 39 MT instruments we deployed in the Central Atlantic a year previously, all with data. PhD student Valeria Reyes-Ortega is currently modeling these data to study how the oceanic lithosphere ages from the ridge axis to tens of millions of years old. In June/July we carried out an extensive CSEM survey over four prospects in the Gulf of Mexico to image gas hydrate bearing strata, using our recently developed “Vulcan” mapping system (Figure 14). The Vulcans are electromagnetic recorders that are neutrally buoyant and towed behind our EM transmitter (Scripps Undersea Electromagnetic Source Instrument, or SUESI). In this survey we extended the length of the array to over 1.5 km, which is impressive when you think we are towing the array only 100 m above the seafloor. This equipment was then shipped off to carry out a gas hydrate survey for the Japanese government in September/October.

In August we collected 21 lake-bottom MT sites in Mono Lake, California. This work was done in collaboration with the USGS, which has been using MT to image hydrothermal and magmatic systems in the Mammoth Lakes and Long Valley Caldera area. There is a big hole in the data where the 20 km wide Mono Lake sits, so we re-packaged our seafloor instruments to be moored lake-bottom instruments (Figure 15).

Figure 14. Preparing one of eight Vulcans (the yellow instrument) for deployment on a 1,600 m long array being towed behind our EM transmitter (SUESI with a smile) in the Gulf of Mexico. The entire system will be lowered to within 100 m of the seafloor to map gas hydrate.
Most recently we deployed 21 MT instruments across the Mendocino Fracture Zone on a UC Shipfunds supported project during the R/V Roger Revelle’s transit from Newport, Oregon, to its home port in San Diego. These instruments will record both EM data and seismic signals for about 2 months, to be recovered early next year. The goal of this experiment is similar to the Central Atlantic project—to study differences in the lithosphere and mantle associated with the 26.5 million age difference across the fracture zone.

RECENT PUBLICATIONS

Naif, S., K. Key, S. Constable, and R.L. Evans (2016): Porosity and fluid budget of a water-rich megathrust revealed with electromagnetic data at the Middle America Trench, *Geochemistry, Geophysics, Geosystems*, 17, 4495–4516, 10.1002/2016GC006556

J. PETER DAVIS
Specialist

pdavis@ucsd.edu, 858-534-2839

Research Interests: seismology, time series analysis, geophysical data acquisition

My research responsibilities at IGPP center upon managing the scientific performance of Project IDA’s portion of the IRIS/USGS Global Seismographic Network (GSN), a collection of 41 seismographic and geophysical data collection stations distributed among 26 countries worldwide. IDA recently concluded upgrading the core data acquisition and power system equipment at all stations using funding provided by NSF via the IRIS Consortium.

The next major step in GSN equipment refurbishment involves replacement of obsolete primary sensors with new models provided by our funding agency. Figure 16 shows one of these sensors being lowered into a 100m deep borehole to insure the quietest possible setting for recording distant earthquakes.

We are also installing infrasound sensors at several of our sites. In order to maximize data quality, we experimented with several types of spatial filters to suppress local wind noise. Figure 17 shows the test results of two such filters when they recorded signals created by a rocket launch. We expect to record infrasonic waves from a wide variety of phenomena using these instruments.

Figure 16. Dr. Carl Ebeling (left), IDA’s chief engineer, and Bergur Bergsson (right) of the host Iceland Meteorological Office carefully lower a new seismometer package into the borehole at GSN station BORG (Borganes, Iceland).

Figure 17. Infrasound sensors located at Pinyon Flat Observatory recorded the successful launch of a SpaceX rocket from Vandenburg AFB on 2017:014 at ~18:18 UTC (just before the 50-minute mark in these subfigures). The pair of sensors, one with a flexible rosette hose filter (shown in red) and one with a rock pile noise reduction filter (shown in blue), recorded the event with differing quality. Waveforms in subfigures (a) and (c) are raw and scaled identically; those in subfigures (b) and (d) are bandpass-filtered between 0.7 and 2.0 Hz and scaled identically. The second signal arriving about 10 minutes after the first was probably generated as the rocket was landing on the barge in the Pacific Ocean.
IDA staff members are working to fine-tune each station’s instruments to enable scientists to extract the most accurate information possible from the data collected. One method for accomplishing this task is by examining key phenomena such as Earth tides and normal modes that should register the same on these important geophysical sensors. To the extent that measurements made with multiple instruments that have been calibrated in very different fashions match, we may have greater confidence that the instrument response information IDA distributes with GSN waveform data is accurate. Investigators use this information to compensate for the frequency-dependent sensitivity of sensors so that they may study true ground motion and its underlying physical causes.

IDA is also playing a leading role in the GSN program by evaluating new models of seismometers that may be deployed within the GSN in the future. IDA makes use of IGPP’s Seismic Test Facility at Pinyon Flat Observatory to test the behavior of instrument prototypes under conditions likely probe the limits of a sensor’s capabilities. Pinyon Flat is quiet enough to permit the recording of faint signals from distant earthquakes but also experiences violent shaking from local events on nearby faults.

RECENT PUBLICATIONS
http://dx.doi.org/doi:10.7914/SN/II

JAMES DAY
Associate Professor
jmdday@ucsd.edu . 858-534-5431
scrippsscholars.ucsd.edu/jmdday, sigl.ucsd.edu

Research Interests: Cosmochemistry; isotope geochemistry; petrology; planetary dynamics; geodynamics; volatile inventories of planets; ocean island basalts; planetary composition; ore genesis; analytical methods

CATCHING CORE FORMATION IN THE ACT - 4.5 BILLION YEARS AGO
Dr. Jasmeet Dhaliwal (now a post-doc at Penn State) undertook her PhD research to understand planet formation mechanisms, from the study of how volatile elements are lost from planets and planetesimals, to the formation of planetary cores. As part of this work, Jasmeet studied a group of ~4.5 billion-year-old meteorites known as ‘acapulcoites’ and ‘lodranites’, which are mixtures of iron metal and silicate minerals. The idea was to exhaustively analyze these meteorites, which trap the earliest stages of melting and metal-silicate segregation (aka core formation) within an asteroid. Our results show that the precursor material of the acapulcoites and lodranites was broadly chondritic in composition, reflecting the bulk composition of the Solar System, and that this material was then heated and subject to melting of metal and sulfide. Some of the meteorites represent metal melt pooling, suggesting that they may originate from deeper within the acapulcoite-lodranite parent body, perhaps close to a pooled metallic ‘core’ region (Figure 18). Overall, our results show that solid metal-liquid metal partitioning in the Fe-Ni-S system in primitive achondrites follows a predictable sequence of limited partial melting and metal melt pooling that can lead to significant siderophile inter-element fractionation effects in proto-planetary materials.

Figure 18. What does a snapshot of core formation look like? Reflected light photomicrograph map of the transitional acapulcoite-lodranite EET 84302, 28. This meteorite serves as a useful demonstration of the migration of metal in primitive meteorites—the FeNi metal (bright regions) in this sample has “pooled” into large anhedral grains, surrounded by silicate mineral grains (olivine, pyroxene—dark).
RESEARCH IN THE SIGL
On-going research in the Scripps Isotope Geochemistry Laboratory currently includes several major themes within the broader subject area of planet formation and evolution. There are currently 12 personnel in the lab (2 post-docs, 3 PhD, 5 MS, Lab Manager and PI) studying: formation of the Moon and asteroids; ocean island basalt and continental flood basalt volcanism; mantle geodynamics; mantle geochemistry and heterogeneity; nucleosynthesis; gold ore genesis, and magma-sediment interactions.

RECENT PUBLICATIONS
CATHARINE DE GROOT-HEDLIN
Research Scientist
chedlin@ucsd.edu; 858-534-2313

Acoustic propagation modeling with application to infrasound; application of infrasound to nuclear test-ban verification and hazard monitoring; use of dense seismic and infrasound networks to analyze very long wavelength gravity waves, as well as infrasound and seismic signals.

My main research area is in the physics of infrasound—sound at frequencies lower than human hearing—its applications to investigating both large scale atmospheric processes and explosions, either natural (bolides) or anthropogenic. Here, I outline two projects that I have worked on in the past several years.

An automated event detector and locator: I have developed an automated method to detect and locate events in two-dimensional space and time using large volumes of data. The method is used to create a catalog of infrasound sources in the eastern United States and southeastern Canada using infrasonic and seismic data recorded by the USArray Transportable Array (TA). There are two main reasons to develop this catalog. First, the catalog provides a list of sources that can be used for basic infrasound research, either for remote study of the events themselves or to study of properties of the atmosphere. Second, we need to understand and document the noise field or other sources that may hamper the performance of International Monitoring System infrasound arrays in monitoring the Comprehensive Nuclear Test Ban Treaty. The method has been successfully applied to TA data—over 1000 events were found in the Midwest and on the east coast in 2013. The method is currently being tested on seismic data to improve current methods of finding small seismic events.

Numerical modeling: A basic research goal in infrasound is to understand the transmission of infrasound through variable atmospheric conditions. To this end, I developed a computationally efficient numerical method to synthesize the propagation of nonlinear acoustic waves through the atmosphere. Nonlinearity, or shock wave propagation, arises when pressure perturbations associated with acoustic waves are a significant fraction of the ambient atmospheric pressure. Shock waves are associated with meteoroid explosions in the upper atmosphere, volcanic eruptions, or nuclear and chemical explosions. Work on this code has progressed to allow for the incorporation of realistic atmospheric effects, such as spatially varying sound speeds and wind speeds, topography, and atmospheric attenuation.

In a recent project, this code has been used to compute the penetration of sound into areas typically thought of as being in a “shadow zone”, where sound refracts upwards, away from the Earth's surface due to the decrease in sound speed with altitude, much as light bends as it travels between air and water. In the summer of 2016, rocket motor were detonated at the Utah Test and Training Range (UTTR), and sound sensors were placed at up to 14 sites eastward of the blasts. Numerical codes were used to create a map to predict the peak sound levels in areas to the east of the detonations. Predicted peak sound levels are compared to observed levels in the figure above.

Figure 21. A map of predicted peak sound pressures for a 17,700 kg detonation at UTTR, which is marked by a green star. Winds carry the peak sound off to the northwest. Sound sensor sites, marked by squares and circles, are color-coded by the recorded peak sound pressure levels. Results show agreement within about 6dB.
RECENT PUBLICATIONS

LEROY M. DORMAN
Professor Emeritus

ldorman@ucsd.edu, 858-534-2406

Research Interests: Seismology, especially seismic structure of the seafloor. Scholte waves and the shear velocity structure of the seafloor. Seafloor instrument development, especially of Ocean-Bottom Seismometers (OBSs) and seismic sources

The shear velocity of the seafloor, which is a few tens of meters per second at the interface, increases rapidly with depth. Approximating this strong gradient using uniform-velocity layers, requires use of many layers (59-100). This presents numerical difficulties in modeling since each individual layer has a very small effect on the observed seismograms. Work of Godin and Chapman has shown that models with a power-law dependence of shear velocity on depth, such as \(v \sim z^{1/2} \), provides a good approximation in many cases. These models have wavefunctions which are self-similar, differing only by a frequency-dependent scale factor.

Synthetic seismograms from models with this structure show Scholte wave group velocities with a linear dependence of slowness (seismogram time) on frequency. This matches many observations well over most of the observed frequency range, however most of the data I have show a linear trend of increasing frequency with time, terminating with an Airy pulse. Producing an Airy pulse requires a uniform-velocity surficial layer, which introduces a scale factor, thus breaking self-similarity. I am working on fitting this type of models to observations of Scholte waves from explosions or the implosive source described below.
RECENT PUBLICATIONS

NEAL DRISCOLL
Professor

ndriscoll@ucsd.edu, 858-822-5026
scrippsscholars.ucsd.edu/ndriscoll

Research Interests: Neotectonics and geohazards

In collaboration with University of Nevada, Reno we have been deploying a new breed of IP (Internet-Protocol) -enabled, early detection fire cameras in and around San Diego County (Alert SDG&E Cameras; www.alertwildfire.org/sdge/). The system (AlertWildfire) is built upon a private and hardened microwave-based communications systems originally developed to transfer seismic data in real-time. These systems are revolutionizing fire suppression from reactive to proactive, reducing the size, impact, and public costs of wildfires. The AlertWildfire network provides a 21st century solution to this challenge by connecting firefighters and federal/state/local agencies with real-time streaming video of fire activity information across a broad geographical range, enhanced by modern HD and 4K near-infrared cameras with pan-tilt-zoom capability. This system provides high quality, on demand time-lapse imagery through public websites to support both proactive firefighting to help prevent fire outbreaks from reaching a catastrophic size, and keeping the public up-to-date on the size and scope of fires within the AlertWildfire networks. As an example of use, the AlertTahoe and BLM Wildland networks were involved with 108 fires in 2016 and 203 fires and counting in 2017. AlertSDG&E Cameras spun up this fall (2017) have already been involved in 15+ fires in only its first few weeks.

Figure 20. View from Los Pinos Alert SDGE fire camera. The arrows show the fire cameras in San Diego County and the the light purple shows the look angle to the west for the Los Pinos camera (www.alertwildfire.org/sdge/)
The economic benefit of a comprehensive integrated network of modern high-resolution fire monitoring cameras for remote public lands and near population centers is unquestionable. Rising costs to federal agencies for fire suppression increased to historical levels in 2017, where federal agencies spent a record $2.5+ billion dollars on fire suppression. The 2016 fire suppression costs in California pegs in at a remarkable $1.85 billion dollars. As the pace of fire fighting costs and economic damages continue to increase markedly over time, early fire detection must be part of the solution to bend the cost curve downward to ensure sustainability. Although fire discovery on the camera system is the gold standard, the greatest benefit thus far is the quick assessment of a fire when called in via 911. Without a camera system, dispatch can launch a spotter plane, send a truck to a hilltop—or guess what to send. Through the AlertWildfire system, a camera is turned and within seconds the size and scope of the fire is known, and reaction can be adjusted upward or downward relative to some base response. A downward adjustment can save up to $100K, whereas an upward adjustment can be critical in knocking down the fire before it gets too large—and makes its run. Thus, the more practical advantage of camera networks, as we have found in working with federal fire agencies in California and Nevada, are “actionable intelligence” and “situational awareness”, often in the early stages of a wildfire. The BLM, USFS, CalFire and local fire districts have provided testimonials, in the media and elsewhere, to the assistance that well placed high-resolution remotely controlled cameras provide, both on the ground for fire fighter safety and for fire management teams at incident command centers making critical decisions to direct fire fighting resources. The public also enjoys access to these capabilities, effectively crowd-sourcing fire observation network-wide. Citizens also use the websites during emergencies to understand their own situational awareness—and the web traffic dramatically increases during urban-wildland interface fires (e.g., Woodchuck Fire, Reno).

RECENT PUBLICATIONS

Low-frequency, long-range ocean acoustics experiments provide a wealth of knowledge about an otherwise opaque environment. The travel-time of sound waves propagating through the depths is affected by both small-scale and large-scale ocean processes. Acoustical oceanography seeks to use sound propagation in the ocean to understand some of the dynamic processes that are present.

Sound is an effective tool to study the ocean interior because it is trapped in a natural occurring waveguide (due to vertical gradients of pressure and temperature) present in all the world's oceans. Some of the processes that can be studied include climate change, ocean circulation, internal waves, and tides. I am part of a group that has conducted several large experiments in regions as diverse as the Philippine Sea in the tropical Pacific, to the Beaufort Sea in the Arctic.

As an example, recently we deployed a 60 element vertical line array in the Arctic to learn about the propagation of sound under the ice, Figure 22. As the sound propagates under the ice, its attenuation is affected by the under-ice roughness. The under-ice roughness is a measure of the age of the ice, old ice is rougher than new ice. So the sound attenuation is a proxy for the sea-ice age. Information about the sea-ice age is very important in understanding the dynamics of the yearly ice melting cycle as it is under increasing stress from a warming planet. Furthermore this direct measurement is an complementary alternative to satellite measurements.

The results revealed that the ice attenuates the sound in a complicated manner shown in Figure 23. The deep hydrophone shows an attenuation that is steeper than the expected spherical spreading. That deep hydrophone measures sound that has traveled at steep angles and interacts with the sea-ice at every bounce and thus is strongly attenuated. The shallow hydrophone shows less attenuation particularly at shorter ranges. This is a bit of a mystery but perhaps there is enough of a duct present that some sound can become trapped and not strongly interact with the ice, at least over the part of the path. On-going modeling work using environmental data collected simultaneously will enable us to understand these results.

This experiment was conducted with funding from the Office of Naval Research and they have supported a larger experiment, which is deployed now, to further our ability to monitor and understand the changing Arctic.

Figure 22. A vertical line array of hydrophones (DVLA) was deployed at a fixed location and then two sound sources, at 125Hz (J-15) and at 250 Hz (HLF-5) were deployed at various ranges to learn about the relationship between attenuation and range. Ship tracks reflect the tortuous route taken to avoid thick sea-ice.
RECENT PUBLICATIONS

Figure 23. CANAPE2015 sound attenuation or transmission loss (TL) vs. range in the left panel. Deep hydrophones show a loss greater than spherical spreading (purple). Shallow hydrophones show a more complicated behavior due to the presence of a range-dependent duct, the so-called Beaufort Lens. The right panel shows a more typical attenuation situation without ice in the Philippine Sea.
YURI FIALKO
Professor
yalko@ucsd.edu; 858-822-5028

Research interests: earthquake physics, crustal deformation, space geodesy, volcanology

Professor Fialko’s research is focused on understanding the mechanics of seismogenic faults and magma migration in the Earth’s crust, through application of principles of continuum and fracture mechanics to earthquakes and volcanic phenomena. Prof. Fialko is using observations from space-borne radar satellites and the Global Positioning System (GPS) to investigate how the Earth’s crust responds to seismic and magmatic loading.

Among recent projects are studies of coseismic and postseismic deformation due to large earthquakes at the margins of the Tibetan Plateau. Prof. Fialko and former graduate student Kang Wang (now a postdoc at UC Berkeley) investigated how the Tibetan lithosphere responded to the 2015 M_W 7.8 Gorkha (Nepal) earthquake that occurred along the central Himalayan arc. This study involved analysis of space geodetic observations including Interferometric Synthetic Aperture Radar (InSAR) data from Sentinel-1A/B and ALOS-2 satellites, as well as Global Positioning System (GPS) data from a local network. InSAR observations reveal an uplift of up to ~70 mm over ~20 months after the mainshock, concentrated primarily at the downdip edge of the ruptured asperity (Figure 24). GPS observations also show uplift, as well as southward movement in the epicentral area, qualitatively similar to the coseismic deformation pattern. Because the earthquake area is characterized by strong variations in surface relief and material properties, finite element models were developed to explicitly account for topography and 3-D elastic structure. Kinematic inversions of GPS and InSAR data, and forward models of stress-driven creep suggest that the observed postseismic transient is dominated by afterslip on a down-dip extension of the seismic rupture. A poro-elastic rebound may have contributed to the observed uplift and southward motion, but the predicted surface displacements are small. Models also explored a wide range of visco-elastic responses, including 1-D and 3-D variations in the viscosity structure. All tested visco-elastic models predict opposite signs of horizontal and vertical displacements compared to those observed. Available surface deformation data appear to rule out the hypothesis of a low viscosity channel beneath the Tibetan Plateau which has been previously invoked to explain the long-term uplift and variations in topography at the plateau margins.

Figure 24. Postseismic line of sight (LOS) displacements from Sentinel-1’s (a) ascending track A085, (b) descending track D019, and (c) descending track D121. Positive LOS displacements correspond to surface motion toward the satellite. Observation periods for each track are indicated in the top-left corner of each panel. From Kang and Fialko (in review).
In another recent study Prof. Fialko and collaborators from the Canadian Space Agency used InSAR observations from RADAR-SAT-2 satellite to investigate deformation due to fluid extraction at the Cerro Prieto Geothermal Field (CPGF) and afterslip on the 2010 M7.2 El Mayor-Cucapah (EMC) earthquake rupture in Mexico during 2011-2016. Advanced multidimensional time-series analysis reveals subsidence at the CPGF with the maximum rate greater than 100 mm/yr (Figure 25) accompanied by horizontal motion (radial contraction) at a rate greater than 30 mm/yr. During the same time period, more than 30 mm of surface creep occurred on the Indiviso fault ruptured by the EMC earthquake. Inversions of InSAR data were used to estimate the rate of volume changes at depth due to the geothermal production at the CPGF and the distribution of afterslip on the Indiviso fault. The maximum coseismic slip due to the EMC earthquake correlates with the Coulomb stress changes on the Indiviso fault due to fluid extraction at the CPGF. Afterslip occurs on the periphery of maximum coseismic slip areas. Time series analysis indicates that afterslip still occurs 6 years after the earthquake.

RECENT PUBLICATIONS
Wang, K. and Y. Fialko, Observations and modeling of co- and post-seismic deformation due to the 2015 Mw 7.8 Gorkha (Nepal) earthquake, J. Geophys. Res., in review
In Fall 2017, we moved to MESOM with new OA Professor Fiamma Straneo to form a Polar Center.

Our research focuses on understanding the processes driving changes on the Antarctic ice sheet. One of the main unknowns is Antarctica’s current contribution to global sea level, and predicting how that will increase in the future. Because Antarctica is so large, and it changes on long time scales (years to decades), satellite data are crucial for monitoring. The main techniques we use are satellite altimetry, either radar altimetry from ERS-1/ERS-2 and Envisat which provides a long record (1994-2012) or NASA’s Ice, Cloud & land Elevation Satellite (ICESat), which provides accurate elevation data for ice sheet change detection for the period 2003-2009. I was a member of the ICESat Science Team and I am a member of ICESat-2 Science Definition Team. My group works on validating ICESat elevation data, using “ground-truth” from our repeated GPS surveys of the salar de Uyuni in Bolivia (in 2002, 2009 and 2012), led by IGPP Professor Adrian Borsa. Using these long, continuous records we can learn about the processes that are leading to accelerated mass loss. We focus mainly on two key dynamic components of the ice-sheet system: (i) the floating ice shelves and (ii) active subglacial lakes.

i. Antarctica’s floating ice shelves: ice shelves surround the entire Antarctic continent and are where most of the mass loss takes place. Since ice shelves are floating, their melting does not contribute directly to sea level. However, ice shelves provide mechanical support to ‘buttress’ seaward flow of grounded ice, so that ice-shelf thinning and retreat result in enhanced ice discharge to the ocean. Our group specializes in monitoring Antarctic ice shelves from satellite altimetry (radar and laser), and we using the continuous time series to understand the mass loss processes from ice shelves. Funded by NASA, we use satellite radar and laser altimeter data from one NASA satellite and four ESA satellites to obtain estimates of ice-shelf surface height since the early 1990s. These data revealed accelerated losses in total Antarctic ice-shelf volume from 1994 to 2012. In East Antarctica, the first half of the record showed a mass increase, likely a result of increased accumulation. In West Antarctica, in particular the Bellingshausen and Amundsen Sea regions, ice shelves lost mass throughout the record with changes on multi-year time scales. Ice-shelf thinning in these regions was substantial: some ice shelves thinned by up to 18% in 18 years. This thinning raises concerns about future loss of grounded ice and resulting sea level. In West Antarctica, the height changes are correlated with ENSO. Susheel Adusumilli (GP student) has generated updated time series for 1994 to 2016, and is writing a paper on these results for the Antarctic Peninsula for GRL.

I am a PI on a large NSF project ROSETTA-Ice to investigate the Ross Ice Shelf using airborne geophysical techniques (gravity, laser and radar). GP student Maya Becker participated in the 2016/2017 and 2017/2018 field seasons.

Figure 26. Distribution of subglacial lakes in Antarctica.
ii. Subglacial lakes: The Antarctic Ice Sheet is on average 2.2 km thick and rests on top of bedrock; the insulation, high pressures, and geothermal heat flux at the ice-bed interface leads to melting of the basal ice layers on the order of mm/year. When averaged over the entire ice sheet, this produces high volumes of subglacial water (estimated volume is 65 Gt/yr), much of which is stored in subglacial lakes and subglacial aquifers. In 2006, I discovered active subglacial water systems under the fast-flowing ice streams of Antarctica using ICESat data. This was inferred from observations of large height changes (up to 10m in some places) in repeat-track ICESat data, which corresponded to draining and filling of subglacial lakes beneath 1-2 km of ice. We continue to monitor active lakes, and we have found 124 in total throughout Antarctica. In the decade since the discovery of active Antarctic subglacial water systems, much progress has been made in our understanding of these dynamic systems; Matt Siegfried extended the record of volume change for all lakes under the CryoSat-2 mask up to 2017 (Figure 26).

I was PI on a large, interdisciplinary 6-year NSF project (Whillans Ice Stream Subglacial Access Drilling (WISSARD)) to drill into one of the subglacial lakes—Subglacial Lake Whillans (SLW) on Whillans Ice Stream (WIS; Figure 3)—and the region of the grounding line across which the subglacial water flows and enters the ocean. A new NSF-funded 4-year project Subglacial Antarctic Lakes Scientific Access (SALSA) began in the 2016-17 field season, and Matt Siegfried is leading the geophysics team, which includes GP student Susheel Adusumilli.

RECENT PUBLICATIONS

JADE D’ALPOIM GUEDES
Assistant Professor
Joint appointment, Scripps Institution of Oceanography (GRD) and Anthropology
jguedes@ucsd.edu, 857-600-6485

Research Interests: Jade d’Alpoim Guedes is an Assistant Professor in the Department of Anthropology and at the Scripps Institute of Oceanography. Dr. D’Alpoim Guedes is an environmental archaeologist and ethnobiologist who employs an interdisciplinary research program to understand how humans adapted their foraging practices and agricultural strategies to new environments and have developed resilience in the face of climatic and social change. She employs a variety of different methodologies in her research including archaeobotany, paleoclimate reconstruction and computational modeling. Dr. d’Alpoim Guedes’ primary region of focus is Asia, where she has worked extensively in China, but also has interests in Nepal, Thailand and Pakistan. Dr. d’Alpoim Guedes also works closely with crop scientists to examine the potential of landraces of traditional crops such as millet, wheat, barley and buckwheat for modern agricultural systems.

My long history of successful collaboration with the PRC have allowed me to be one of the few foreign researchers to have an active international archaeological fieldwork project. I am currently the lead PI on an NSF and National Geographic funded excavation project located in the Jiuzhaigou National Park, Sichuan Province (formerly a part of Eastern Tibet). This project aims to understand how ancient Tibetans changed their subsistence regimes in the face of climatic change and shifted from subsistence regimes based on millets to ones based on pastoralism and barley. We carried out our first preliminary season in the field last summer (Figure 27). We documented the position of the archaeological site which lies underneath a series of landslides and carried out systematic radiocarbon dating. We were also joined in the field by a team working on tree rings from Nanjing University.

My laboratory has also been busy with the analysis of new series of archaeobotanical material from sites across Asia. In addition to ongoing analysis on specimens from China, we have also recently completed analysis on materials from two sites in Thailand (Promthin Tai and the Thai Archaeometallurgy Project sites). This year, I’m working together with new postdoctoral fellow, Alexia Decaix, on a collection of archaeobotanical material from the ancient city site of Harappa in Pakistan. We will be trying to answer how this ancient metropolis feed the many people that lived there through episodes of climatic change. We will also be employing an analysis of wood charcoal to understand how plant communities were changing around the site. Lab members have also been busy working on field trials of crop landraces to document of East Asian, south Asian and African millets to document their ability to withstand low precipitation and high temperatures.
My lab has also continued to develop methods for modelling how changes in climate impacted human agricultural production in the past using niche modelling (Figure 28). A recent paper in PNAS summarized the growing use of this type of computational method in archaeology.

RECENT PUBLICATIONS

Figure 28. Crop niche modelling demonstrates that a major dip in human’s ability to grow millet took place during the following 1600 BP. This period of time corresponds to one where the Chinese capital relocated from Xi’an in western China, to Nanjing in Central China and shows that humans may have habitat tracked to areas of more favorable agricultural production. They also developed a series of innovations that enabled farmers to continue to occupy increasingly agriculturally marginal areas to the north and west: a.) the adoption of new crops such and wheat and barley, b.) the development of technological innovations like the grand canal that permitted the shipment of grain from Southern to Northern China.
MICHAEL A.H. HEDLIN
Research Geophysicist
hedlin@ucsd.edu; 858-534-8773

Research Interests: Study of large atmospheric phenomena, study of long-range propagation of subaudible sound in the atmosphere, seismo-acoustics

INFRASOUND: The study of subaudible sound, or infrasound, has emerged as a new frontier in geophysics and acoustics. We have known of infrasound since 1883 with the eruption of Krakatoa, as signals from that event registered on barometers around the globe. Initially a scientific curiosity, the field briefly rose to prominence during the 1950’s and 1960’s during the age of atmospheric nuclear testing. With the recent Comprehensive Test-Ban Treaty, which bans nuclear tests of all yields in all environments, we have seen renewed interest in infrasound. A worldwide network of infrasound arrays, being constructed for nuclear monitoring, is fueling basic research into man-made and natural sources of infrasound, how sound propagates through our dynamic atmosphere and how best to detect infrasonic signals amid noise due to atmospheric circulation. This network has been supplemented with deployments, such as the 400-station seismo-acoustic USArray Transportable Array (TA), for basic research and enhanced monitoring of regions of great interest.

RESEARCH AT L2A: The Laboratory for Atmospheric Acoustics (L2A) is the home of research in this field at IGPP. Several faculty, post-docs and PhD students work full or part time in L2A, supported by engineers and technicians in the lab and the field. More information about this lab can be found at l2a.ucsd.edu. Presently we study a broad suite of problems related to both natural and man-made sources.

DENSE NETWORK STUDIES: The global infrasound network is unprecedented in scale however it is still very sparse, with ~100 stations operating worldwide. To increase the density of sampling of the infrasonic wavefield we have used acoustic–seismic coupled signals recorded by dense networks, such as the 400-station USArray Transportable Array (TA) and various PASSCAL deployments. We have used the original (seismic-only) TA network to create a catalog of atmospheric events in the western United States similar to commonly used seismic event catalogs. The acoustic catalog is used in part to find sources of interest for further study and to use the recorded signals to study long-range infrasound propagation. Recorded signals from instantaneous sources are commonly dispersed in time to several 10’s of seconds. Modeling indicates that this is due to interaction of the sound waves with fine-scale structure in the atmosphere due to gravity waves. We are currently using infrasound to constrain the statistics of this time-varying structure.

The National Science Foundation funded our group to upgrade the entire TA with infrasound microphones and barometers. Our sensor package is sensitive to air pressure variations from D.C. to 20 Hz, at the lower end of the audible range. The upgrade converted the TA into the first-ever semi-continental-scale seismo-acoustic network. The network has moved east across the US as stations are redeployed. Figure 29 (left panel) shows station locations from January 1, 2010 through the end of Septem-

Figure 29. (left) sites occupied by stations in the TA from January 1, 2010 through Sept 30, 2014. These stations have been grouped into 3-element arrays (triads) for the study of long-period atmospheric gravity waves. The panel on the right shows the variance of atmospheric pressure in the 2-6 hr passband during the thunderstorm seasons from 2010 through 2014. The highest variance to the west of the Great Lakes is due to gravity waves excited by convective storms.
ber, 2014. We have divided this collection of stations into 3,600 elemental arrays (triads) to study atmospheric gravity waves. An early result is shown in the right panel of figure 1. This map shows the variance of atmospheric pressure in the 2-6 hour pass-band at local night. Elevated variance of atmospheric pressure is due to the presence of atmospheric gravity waves. As expected, large gravity waves are common to the west of the Great Lakes and are from convective activity.

FIELD OPERATIONS: Our group has built infrasound arrays for nuclear monitoring in the US and Africa. We operate research arrays located near San Diego.

RECENT PUBLICATIONS

DAVID R. HILTON
Professor
drhiton@ucsd.edu, 858-822-0639

Research Interests: Noble gas and major volatile isotope geochemistry of subduction zones, mantle hotspots, groundwaters and geothermal systems.

We continue to engage in a variety of studies involving volatiles—noble gases, halogens, and major volatiles (such as CO\textsubscript{2} and N\textsubscript{2})—from different tectonic environments. New publications this year include two papers on the Icelandic hotspot where we (a) review the volatile systematics of geothermal systems throughout Iceland, and (b) present new He isotope data enabling us to map the He isotope distribution of Iceland and to compare it to geophysical maps of the location of mantle melting and the Icelandic hotspot (see figure). Other hotspot studies include studies of the Deccan Traps, India and the question of the nature of the mantle source supplying these lavas.

The use of oxygen isotope stratigraphy of quartz crystals is exploited in our study of the Toba super-eruption of the late Quaternary which was speculated to have brought mankind to near extinction. Low δ^{18}O values in the outermost layers of the quartz phenocrysts reveal an influx of hydrothermally-altered roof material immediately prior to eruption thus providing a viable trigger for large (Toba-style) magmatic systems.

Three papers describe collaborative work with Chinese colleagues, and involve (a) the nature of deep fluids contributing to the Songliao Basin, the most important petroliferous basin in China, (b) the fluxes of methane and other hydrocarbons from mud volcanoes from the Junggar Basin, and (c) the utility of chromitites from Tibet to trap and preserve noble gases and to reveal the nature of deep fluids involved in their formation.

Figure 30. He isotope distribution of Iceland (colored background)—obtained from basaltic glass, phenocrysts and geothermal systems, compared to A. Bouguer gravity anomaly, and B. S-wave velocity structure at 200 km depth. Note that the lowest gravity anomaly (~40 mGal) is located in Central Iceland where a high 3He/4He domain is found. The highest S-wave anomaly (~3%) is also located in the same region. From Harðardóttir et al. (2018).

RECENT PUBLICATIONS

MIRIAM KASTNER

Distinguished Professor of Earth Sciences

mkastner@ucsd.edu, 858-534-2065

Research Interests: The role and fluxes of fluids and solutes in subduction zones and ridge-crests. Marine gas hydrates and implications for the C cycle and global change. Chemical paleoceanography. The geochemistry and diagenesis of marine sediments and the implications for paleoceanographic interpretations. The origin of marine authigenic minerals: phosphates, dolomites, silicates (cherts), and barites, and their potential as recorders of seawater chemistry

I am on sabbatical leave focusing on two publications:
1. On the role of fluids in subduction zone and global implications,
2. An invited volume of Geochemical Perspectives on “Marine sediment geochemistry and diagenesis for chemical paleoceanography”

In between I am trying to test the feasibility of using Nd isotopes in marine barite for paleo-circulation.
DEBORAH LYMAN KILB
Project Scientist
dkilb@ucsd.edu; eqinfo.ucsd.edu/~dkilb/current; 858-822-4607

Research Interests: Crustal seismology, earthquake triggering, and earthquake source physics. Diversity Interests: Improving how science is communicated to students and the public.

A frequency-domain approach to identify small earthquakes [Linville et al., work in progress]. We develop a frequency-domain, array-based detection algorithm, which exploits the gridded nature of the Transportable Array network (~400 stations), to detect and locate small (-0.25≤M<2) earthquakes. Applying our new method to data from three sedimentary basins in the Central United States, we can increase the catalog size three-fold (from 140 to 562 events). A majority of the newly detected seismicity in the Permian and Denver-Julesburg basins may be linked with induced seismicity, while in the Williston Basin there continues to be little evidence of induced sequences. We apply single-link clustering and sub-space detection methods to our data (Figure 31 and find some regions have very similar sources (i.e., a limited number of subspace families) while others are extremely variable (up to 38 subspace families). Because our method requires no preconceived assumptions about the source waveform characteristics, our algorithm can be used to successfully find signals of unknown source types.

A Time-Domain Detection Approach to Identify Small Earthquakes within the Continental U.S. [Velasco et al., 2016]. We aim to detect small seismic events triggered by distant large earthquakes using the continuous data recorded by the EarthScope USArray network. We apply time domain short-term average (STA) to long-term-average (LTA) ratio algorithms to three-component data to create a catalog of detections. We apply this method to ±45 hours and ±5 hours of USArray data from the 2011 Japan magnitude 9.0 and the 2010 Chile magnitude 8.8 earthquakes, respectively. Our detection algorithm identified three regional earthquakes in the Coso region of California that were concurrent with the passage of the S- and surface-waves of the Chile mainshock at station R11A, as well as events in Texas following the Japan earthquake. These distant aftershocks are assumed to be triggered by dynamic stress changes caused by the mainshock’s seismic waves.

DIVERSITY ACTIVITIES (OCTOBER 2016—SEPTEMBER 2017)
Sally Ride Science Summer Academy for Girls [SRS 2017]: I was the Director of the 2017 Sally Ride Science (SRS) Summer Junior Academy, which took place at Mission Bay High School. In this capacity I was responsible for selecting and vetting the instructors and classes. The 2017 Academy ran for 4-weeks and included 59 classes (9-noon or 1-4PM). A total of 524 middle- and high-school age students enrolled in the classes, of which 46% of the students were awarded scholarships. Of the 19 instructors in our program this year, 10 were SIO affiliated.
Virtual Reality App of the Sally Ride Research Vessel [Yang et al., 2017; software app]: Our SIO GAMES group created a free virtual reality app, which provides viewers a virtual reality tour aboard Scripps Institution of Oceanography’s newest research vessel the R/V Sally Ride (Figure 32).

Library NExT: I am the Science Outreach Director of the Library NExT (Network of Education x Training) program, which is a partnership program between the San Diego Libraries and Sally Ride Science. The pilot program launched in January 2017, offering free classes for middle- and high-school students at 10 local libraries. To date the program has provided 207 hours of instruction to 557 students.

The Great California Shake Out: For the fifth year in a row, I partnered with the Birch Aquarium at Scripps to participate in their annual Great California Shake Out event. I was on site to discuss current seismology research at Scripps, real-time seismic data and earthquake preparedness.

Invited speaker: Point Loma Nazarene University Perspectives on Science lecture (December, 2106), La Jolla Women’s Society (April, 2017) and San Diego Lion’s Club (April, 2017).

Outreach: Day for Kids (Boys & Girls Club; presenter), STEM club (Ocean Knoll Elementary; presenter), Seismology Rocks! (Notre Dame Academy; presenter; 5 programs), Earthquake! (Ocean Air Elementary School; presenter), San Diego STEAM Maker festival (presenter), Science Nights (elementary schools; assisted; 5 programs).

RECENT PUBLICATIONS
GABI LASKE
Professor in Residence
glaske@ucsd.edu, 858-534-8774

Research interests: Regional and global seismology; surface waves and free oscillations; seismology on the ocean floor; observation and causes of seismic noise; natural disasters and the environment

Gabi Laske's main research area is the analysis of seismic surface waves and free oscillations, and the assembly of global and regional seismic models. She has gone to sea to collect seismic data on the ocean floor. Laske's global surface wave database has provided key upper mantle information in the quest to define whole mantle structure. Graduate students Christine Houser and Zhitu Ma as well as students from other universities have used her data to compile improved mantle models.

Global reference models: Laske continues collaboration with Guy Masters and former graduate student Zhitu Ma to compile and distribute global crust and lithosphere models. CRUST1.0, A 1-degree crustal model, was released in 2013. Applications relying on CRUST1.0 are found across multiple disciplines in academia and industry. Laske maintains the distribution website and provides guidance to users.

The PLUME project: For the past decade or so, Laske has analyzed waveforms collected on ocean bottom seismometers (OBSs). She was the lead-PI of the Hawaiian PLUME project (Plume–Lithosphere–Undersea–Mantle Experiment) to study the plumbing system of the Hawaiian hotspot. Results from various body wave, surface wave and receiver function studies were published. In the past year, continued collaboration with Kate Rychert at the University of Southampton, U.K. led to a publication on the seismic structure and geodynamical implications of the mantle transition zone.

The PLUME dataset also provides the basis for PhD student Adrian Doran who studies seafloor compliance and ambient-noise Green's functions. His work will help constrain structure in the shallow sediments and crustal layers that were not resolved by previous work. Doran formulated the concept of horizontal compliance and published a first-ever application to real OBS data. He also developed a new automated tool to determine OBS instrument orientations using Rayleigh waves, with little interaction by the data analyst.

A paper was published this year, and the Python computer code released for general use. Surface Wave Azimuthal Anisotropy: MS student Chenghao Shen finished his analysis of PLUME Rayleigh-wave azimuthal anisotropy. While shear-wave splitting results appear to be sensitive only to the fossil spreading direction "frozen" into the lithosphere, Laske and her students found a clear signal that is suggestive of plume-related flow in the asthenosphere. Shen's analysis included extensive forward modelling for local two-layer models which was presented at two international conferences. Laske has also collaborated with Donna Blackman to model flow-induced rock texture in the aging ocean lithosphere, and implications for seismic anisotropy. Results are summarized in a publication.

Figure 33. Map of Glacier de la Plaine Morte just south of Wildstrubel, Switzerland. The Rhone valley is to the south. Marked is the outlet stream at the toe of Rexliglacier that drains into the Simme river to the north. Arrows mark Lac des Faverges, a major glacier lake, and the two crevasse fields that Laske and Walter occupied with four arrays of short-period seismometers during the 2016 summer. The instruments were borrowed from the GIPP instrument pool at GFZ, Potsdam, Germany.
The AnICEotropy project: Laske has been collaborating with Fabian Walter at ETH, Switzerland to study ice quakes on the Glacier de la Plaine Morte, Switzerland. This plateau glacier that separates Cantons Berne and Valais develops a glacier lake, Lac des Faverges, during snow melt that frequently drains and floods the Simme valley to the north. Recent floods have become more frequent and larger, approaching the capacity of the flood control system. Last year, Laske and collaborators installed seismometers on the glacier and to identify precursory ice quake activity that helps improve early flood warning. As an academic by-product, the gathered seismicity allows a ‘sandbox’ azimuthal anisotropy analysis to test the hypothesis that seismic anisotropy is aligned with the crevasses on the glacier. Laske now co-mentors ETH graduate student Fabian Lindner, and a manuscript on azimuthal anisotropy is in preparation.

The CABOOSE project: The California Borderland Ocean Seismicity project (CABOOSE) is a collection of past present and future small OBS deployments to assess seismicity off-shore Southern California. For the ADDOSS (Autonomously Deployed Deep-ocean Seismic System) project, Laske collaborated with Jon Berger, John Orcutt, Jeff Babcock and Liquid Robotics Inc. to develop and test an untethered OBS system that is capable of providing near-real time data collected on the ocean floor. A wave glider towing an acoustic modem maintains a communications link to the OBS. The group has performed several tests in shallow (1000 m) and deep (3800 m) water. During the 3-month deep-water test about 300 km west of La Jolla, never-before seen seismic activity was observed in the Outer Borderland. Doran and Laske returned in the summers of 2015 and 2017 on UC ship fund cruises to continue investigation of the Borderland seismicity in more detail.

RECENT PUBLICATIONS
The three-dimensional structure of the mantle tells us about how the Earth is moving to get rid of its heat and is central to the question of the nature of heat and mass transfer within the Earth. Three-dimensional images of the mantle have been extensively studied using travel time tomography. Shear (S) velocity images of the mantle agree well but the compressional (P) velocity and density structures are still controversial.

To address this, we focus on the analysis of Earth’s normal modes and the development of a novel mathematical approach to better estimate the lateral variation of Earth structure with estimates of its robustness. Normal mode frequencies are sensitive to both velocity and density structures. Earth’s normal modes sense different parts of the Earth depending upon the mode and type of vibration. Normal modes are visualized in the frequency domain and normal mode spectra, which would be single resonance peaks if the Earth were spherically symmetric, are split into a number of lines (known as singlets) due to rotation, ellipticity, and three-dimensional structure of the Earth. It is this splitting that we use to infer the 3D structure of the Earth.

The method we use (the “auto-regressive” method) was previously introduced by Masters and co-workers in 2000. The advantage of the method is that it needs no knowledge of the earthquake source and so can be used for the largest, most complex, earthquakes ever recorded. We first remove the receiver location information from the stack of complex spectra for all the available stations around the globe and produce spectra known as “receiver strips” (Masters et al. 2000, Figure 34). Importantly, this step allows us to visualize the excitation of singlets of a normal mode. For example, two inner core sensitive modes, 3S2 and 13S2, are excited differently by the same earthquake (Figure 34). The zero line in the case of 3S2 is noisy and signal is almost below the noise level while that for 13S2 is much better. The receiver strips can then be analyzed to recover “structure coefficients” which are linear functionals of 3D structure and which can be used to generate “splitting functions” which are the modal equivalent of phase velocity maps for surface waves. Here, we implement a fully non-linear parameter sampling approach to estimate the structure coefficients (Pachhai et al. 2016). The benefit of this approach is that it allows us to determine what aspects of 3D structure are actually required to fit the data.

Figure 34. Amplitude spectra of receiver strips for, (left) 3S2 and (right) 13S2, inner core sensitive modes computed for Bolivia earthquake, 1994.
To have a better understanding on the robustness of estimated 3-D structures, we developed a probabilistic Bayesian approach. The Bayesian method combines a prior information (what we know beforehand) and the likelihood (which incorporates the data information). It follows a random search in which models are proposed randomly from a prior range. The proposed model is accepted or rejected based on the ratio of likelihood in the current iteration to that in the previous step. If the proposed model is accepted then the model is updated and is continued further. In contrast, if the proposed model is rejected then the old model is kept and the process is repeated. This algorithm is run for 100-thousands of iterations and the ensemble of models are collected. From this ensemble of models, we can evaluate the uncertainty of the 3-D structure.

After evaluating the applicability of this approach through synthetic experiments for different modes, we applied it to estimate the splitting coefficients for more than 20 inner-core sensitive modes. The estimated coefficients are visualized on the surface of spherical Earth through the splitting functions. Example of splitting functions and their uncertainties are shown in Figure 35 for two inner core sensitive modes (3S2 and 13S2). One of the most common features of these splitting functions is that the frequency is positive near the poles and is negative near the equator suggesting faster velocity along the polar direction and slower along the equator. This directional dependence of velocity is due to the presence of cylindrical anisotropy in the inner core. In contrast, the standard deviation of the splitting functions for 3S2 is much higher than that for 13S2, particularly near the poles. This is due to the noisy receiver strips and almost no excitation of the zero line in the case of 3S2 mode. Such an assessment would not be possible with a traditional approach.

RECENT PUBLICATIONS
As reported last year, I stepped down from my long-held role as chair of the ICSU World Data System (ICSU-WDS) Scientific Committee (SC) in July 2015. This did not end my participation, however, and I have attended all teleconferences and several meetings, chaired by Professor Sandy Harrison of the University of Reading.

As Chair Emeritus for WDS, I have served as liaison with the ICSU Committee for Data in Science and Technology (CODATA: www.codata.org). This is a completely different aspect of the emerging words of data policies and data sharing. I was elected to the Research Data Alliance (RDA: www.rd-alliance.org) Council in early 2016, and have served since then. My specific assignments include:

- RDA Council
- Council Strategy
- Sustainability and Funding
- Engagement and Communications
- Operations and Coordination

A major event, first in history, took place in Denver, CO, on September 10-17 2016. It was called “International Data Week” (IDW: www.internationaldataweek.org). For the first time, several events were synchronized:

- The ICSU World Data System and ICSU CODATA held their international conference SciDataCon-2016, including business meeting, together with
- the WDS member forum,
- the CODATA Data Science conference
- The RDA plenary meeting (P#8) was held in the same venue immediately afterwords

An important component of IDW was held mid-week, labeled International Data Forum (IDF). It featured senior speakers from various governments, and agencies. As a member of the organizing committee, I spend innumerable hours on the phone coordinating the activities and obligations of three very different international organizations, based on different continents, all focused on data issues. This was surprisingly challenging, and convergence did not happen until very late in the planning process.

I organized and chaired a session entitled “Data Stories” that dealt with Citizen Science (such as Great Barrier Reef Coral bleaching survey and OpenStreetMap), and Health Science (Doctors without Borders). That session was extremely well received. Ultimately, the IDW and IDF were remarkably successful, and there is an emerging strong consensus to repeat such an event in a couple of years, probably on a different continent, with South America and Africa as serious contenders. I will surely participate.
A recent entrant on the international data scene is the Research Data Alliance (RDA). As a newly minted member of the RDA Council, I continue to be an active participant in a number of the innumerable RDA Working Groups and Interest Groups, in particular:

- Repository Audit and Certification DSA–WDS Partnership WG
- Libraries for Research Data IG
- RDA/CODATA Legal Interoperability IG
- RDA/WDS Certification of Digital Repositories IG
- RDA/WDS Publishing Data IG
- Digital Practices in History and Ethnography IG

Although I am a silent participant in most of these, I have been very active in a couple which have turned out to be very demanding. The two most demanding ones are the DSA-WDS, and the Legal Interoperability groups. In the former case, the task was to coordinate the criteria used by the World Data System and the Data Seal of Approval organizations to certify their respective data facilities. What looked initially like a simple process turned into a protracted discussion. A main difficulty arose because Humanities and Social Science data centers notion of data curation is to preserve the data exactly as submitted, whereas physical sciences and in particular, astronomy allow updating of the metadata records as more information (e.g. calibration) becomes available. After 18 months of effort, a common set of criteria was arrived at, that is undergoing the RDA process of adoption, and that is being presented at a variety of venues, notably the AGU meetings.

The Legal Interoperability Interest Group was the object of well over 65 teleconferences, involving primarily lawyers from several continents. Except for one librarian, I was the only non-legal participant and the only scientist. The main issues discussed involved intellectual property rights, and the licensing of scholarly works and the associated data. Profound differences existing between US laws and practices notably the fair use doctrine, the European Database Directive, which has been adopted by almost all EU members, and the Australian intellectual property laws. The final report was reviewed by no fewer than 20 reviewers. The six principles listed below were arrived at after considerable discussion. They seem to be uncontroversial, yet had to be reworded more than once in response to the reviews. The final document includes a lengthy attachment outlining implementation guidelines. Of special note is the recommendation that the Creative Commons CC-By license be used (instead of the oft quoted CC-0) in order to improve legal interoperability among various jurisdictions. Again the RDA adoption process is underway, and the material is being circulated among National Academies, Learned societies, and data facilities worldwide, with a target date of April, 2017.

Finally, I continue my service on the EarthCube Council of Data Facilities as well as my participation in the NASA planning and review activities surrounding two Low-Earth-Orbit geophysical missions planned for the end of the decade: ICESAT-2 and NISAR.

RECENT PUBLICATIONS

Legal Interoperability of Research Data: Principles and Implementation Guidelines

WALTER MUNK
Research Professor
wmunk@ucsd.edu, 858-534-2877

Research Interests: Ocean waves and sea level changes

My research has again been divided between acoustics and physical oceanography. The focus is on wind drag on a roughened sea surface (wavelengths 2 cm to 1m), central to understanding the wind-driven ocean circulation, coastal upwelling, near-surface mixing, deep pressure fluctuations, etc., etc. These are classical problems, but some of current naval interest.

It is surprising that these classical problems are not well understood. Let me review what has been accomplished and what has NOT. In 1954 Cox confirmed that oil spread on the channel between Hawaii and Maui reduced not only the hf-roughness (understood since the old sailing days), but also the low-frequency higher waves. In 1963 Van Dorn demonstrated that soap on an open-air yacht basin greatly reduced the wind-induced surface slope.

The 1954 measurements were part of an experiment to photograph sun-glitter from the AFOSR B-17 photographic plane. Thirty images from wind speeds between 1 and 15 m/s yielded (i) a remarkably linear dependence on windspeed, and (ii) a remarkably large cross-wind component of 59% the up-down wind component. These results were confirmed in 2006 by Breon and Henriot with almost 10 million satellite images taken globally. Attempts to explain these broad directional beams have not been successful. Ultimately they need to produce a balance between generation and dissipation, and the molecular dissipation of gravity waves is negligible compared to any reasonable model of wind generation.

Here we have taken a different approach. We boldly assume that the flow of the turbulent atmosphere over the sea surface is associated with random pressure points travelling at some velocity V and generating a non-directional wave system. The directional pattern is formed by the subsequent coherent addition of waves formed at different times. This is precisely the ship wake problem first reported by Kelvin in 1887. The wave direction varies from alpha =—90° at the starboard bow to 0 at the stern to +90 at the port bow, accordance with C(k) = Vcos alpha (Munk 2017, in preparation). Remarkably, some geometric features, such as the Kelvin cusps, are independent of the velocity V of the pressure points. The hypothesis requires further observations.

We are now engaged in trying to understand the other finding: (i) the linear dependence of mean-square slope on wind speed.

RECENT PUBLICATIONS

CORAL-EATING FISH ACTUALLY ENHANCE GROWTH OF CORAL REEFS

With postdoctoral student, Katie Cramer and Aaron O’Dea at the Smithsonian Tropical Research Institution, I have been coring reefs in Panama and Belize (Figure 37) to see how human activity has changed the reef. One of our findings is that parrotfish have dramatically declined on Panama reefs over the past century. It turns out that removal of the parrotfish (which we can see by looking at the abundance of well preserved parrot fish teeth in reef sediment) is closely tied to the health of a reef. The more parrotfish, the faster the reef grows. Previous work has suggested that parrotfish and grazing invertebrates may aid reef growth by removing algae that otherwise competes with corals. Our data set—the first to use paleoecological records of fish—suggests that this hypothesis is true. This study is part of a larger effort to examine issues in marine ecology and the history of human impacts on coastal marine systems. We are also working on reefs in Belize and in harbors in the Gulf of Corinth, Greece.

NORTH ATLANTIC SEDIMENT DRIFTS BEGIN TO FORM IN THE EOCENE

Analysis of seismic stratigraphy combined with coring data from International Ocean Discovery Expedition 342 (Newfoundland Paleogene Sediment Drifts) shows that clay-rich sediment drifts began accumulating on the Newfoundland Ridges (site of the Titanic wreck) 47 million years ago, just above the Early-Middle Eocene boundary (Figure 38). Sedimentation rates of pelagic foraminifer-nannofossil ooze remain constant during the Eocene, but rates of clay delivery triple in the transitions from the early Eocene to the Middle Eocene. The sediment changes from white foraminifer-nannofossil ooze to green nannofossil clay. The drifts initially accumulated as contourites at 4-4.5 km water depth, switching to an extensive belt of mud waves at 3.5-4 km depth in the Oligocene (~25 Ma). This study, lead by University of Virginia MS student, Patrick Boyle, used a grid of seismic reflection data I collected in support of IODP Expedition 342. The same dataset is also instrumental in support of a new, active drilling proposal, (IODP Proposal 847—"Oligocene Miocene Sediment Drifts") that we hope will sail in a few years time.

Figure 37. The inside of a coral reef. This core, collected in Bocas del Toro, Panama, was collected to examine the ecological history of Panamanian reefs. Most of the cross-sections of fossils are Porites corals that are about a centimeter in diameter. We have extracted fish teeth from this core, along with fossils of many other types of organisms (from foraminifera to molluscs) to reconstruct reef history and examine basic questions in reef ecology. Sediment in the bottom part of the image is dated to ~1980 AD, whereas that in the top section is ~1550 AD based on U-Th dating.

Figure 38. Multibeam record of the J Anomaly Ridge showing Miocene to Eocene sediment drifts accumulating around volcanic cones. The Titanic wreck site is a few kilometers east (to the right) of the imaged region of the SE Newfoundland Ridge.
RECENT PUBLICATIONS

JOHN ORCUTT
Distinguished Professor of Geophysics, Editor-in-Chief of AGU Earth and Space Science
jorcutt@ucsd.edu, 858-534-288t

Research Interests: Seafloor seismology and acoustics including applications to nuclear test ban treaty verification. Large scale data management and access.

In close collaboration with Jon Berger, Martin Rapa, and Jeff Babcock and with an objective of increasing the fidelity of recorded data on the seafloor, we have developed a novel approach for burying seismometers in the seafloor, which could be readily extended to other sensors. Our rationale for seismometers, however, is to reduce current or flow noise around a sensor that simply sits on the seafloor as is the case for all current systems in use. In a large experiment we conducted years ago south of Hawaii, we tested a variety of seismometers to ascertain the gains that could be realized; e.g. Collins et al., 2001. Some sensors sat directly in the seafloor sediment, one was buried just below the surface and another was inserted into a cased borehole drilled earlier by the NSF Ocean Drilling Program (OSN-1). The quietest location turned out to be the sensor that was buried just below the surface.

Earlier this year, during science sea trials of the new R/V *Sally Ride*, we took advantage of the availability of the WHOI JASON ROV to test a remote burial system on the seafloor in 1000m of water. The system, inserted in the seafloor, is pictured in Figure 39. The burial system comprises three aluminum tubes arranged in a triangle with the seismometer in the center. The three tubes are attached to a manifold leading to a pump on JASON sucks the tubes into the seafloor (e.g. suction piles often used in seafloor anchoring). A movie of the operation (in real time) can be played from https://www.dropbox.com/s/2rczz2lle1tk60q/Sucker_clip.mp4?dl=0.

![Figure 39. SPIDER inserted in seafloor using WHOI JASON](image)

Once the JASON pumps are turned on, the system buries the tubes quickly (seconds) as well as well as the centrally mounted seismometer. Once inserted, the pumps can be reversed to blow the system back to the seafloor leaving behind the seismometer for long-term recording.
We subsequently named the tube assembly ‘SPIDER’ for Seismometer Penetration and Internment Device for Embedment Realization. A future assembly is shown in Figure 40. In the new design, each of the tubes has its own seawater pump and operation will be coordinated between the pumps to minimize the tilt of the assembly as the SPIDER is pumped into the seafloor. Each of the pumps has its own Deep Sea Power and Light battery pack and the recording system and batteries for long-term operation (1-3 years) are attached to the SPIDER. The power and recording assemblies are released when SPIDER returns to the sea surface for recovery by a research vessel at the surface. We plan to add a camera and possibly LIDAR to the package to map the seafloor as the target is approached. The data will be valuable for assessing the effects of seafloor morphology and constitution and, in time, using the knowledge for the artificial intelligence (AI) needed to ensure success with each drop.

Provisional Patent: 37866-613P01US/2017-198-1

RECENT PUBLICATIONS

ANNE POMMIER
Assistant Professor
pommier@ucsd.edu, 858-822-5025

Research Interests: Physics and chemistry of silicate melts; role of magma in planetary interiors, from the scale of volcanic magma reservoirs to planetary-scale magma oceans; evolution of planetary interiors from "deep time" (e.g., planet evolution) to the present.

Research projects over the last year have mainly focused on (i) the experimental investigation of the core-mantle boundary systems of terrestrial planets (in particular, Mercury), (ii) the investigation of subduction zones by combining field and laboratory electrical measurements.

(i) Transfers of mass, heat, and electric currents between a silicate mantle and an underlying metallic core characterize the Core-Mantle Boundary (CMB) region of terrestrial planets. In particular, constraining the structure and chemistry of the CMB region of Mercury is crucial to understand its thermal state and unique magnetic activity. To probe the physical and chemical processes of the Hermean CMB, SIO Postdoctoral Researcher Zhou Zhang and I conducted an electrical study of metal-olivine systems at pressure, temperature, and chemistry conditions relevant to the mantle and CMB region of Mercury (Zhang and Pommier, in rev.). This is the first experimental study performed in the new Planetary and Experimental Petrology Lab in IGPP. Under funding from an SIO Postdoc Fellowship, a UCSD Academic Senate Research Grant, and NSF-COMPRES, we conducted electrical experiments in the multi-anvil apparatus at 5 and 7 GPa and up to 1675°C using the impedance spectroscopy technique. The samples are composed of one metal layer (Fe, FeS, FeSi, or Fe-Ni-S-Si) and one polycrystalline olivine layer, with
the metal:olivine ratio ranging from 1:0.7 to 1:9.2. For all samples, we observe that the bulk electrical conductivity increases with temperature from $10^{-2.5}$ to $10^{1.8}$ S/m, which is higher than the conductivity of polycrystalline olivine but lower than the conductivity of the pure metal phase at similar conditions. In some experiments, a conductivity jump is observed at temperature corresponding to the melting temperature of the metallic phase. Both the metal:olivine ratio and the metal phase geometry control the electrical conductivity of the two-layer samples. By combining electrical results, textural analyses of the samples, and previous studies of the structure and composition of Mercury’s interior, we propose an electrical profile of the deep interior of planet that accounts for a layered CMB-outer core structure. The electrical model is in agreement with existing conductivity estimates of Mercury’s lower mantle and CMB using magnetic observations from MESSENGER and thermodynamic calculations, and thus, supports the hypothesis of a layered CMB-outermost core structure in the present-day interior of Mercury. We propose that the layered CMB-outer core structure is possibly electrically insulating, which may influence significantly the planet’s structure and cooling history.

(ii) Understanding the thermal and compositional state of our planet and in particular across subduction zones has been the focus of a collaboration with Dr. Rob L. Evans (WHOI) (Pommier and Evans, 2017). The cycle of fluids in subduction zones is a critical component of slab recycling and continental building processes. A better understanding of the role of melt and volatiles is therefore key to improving our knowledge of the geodynamic processes at work, shaped by mass transfer and energy release. It can also help us better assess volcanic and earthquake hazards in these contexts. We compiled electromagnetic studies of subduction zones to identify common and unique electrical signatures and based on electrical laboratory measurements, we interpreted them in terms of fluids and rheological constraints. This contribution is a novel synthesis in which we propose new explanations for electrical anomalies at 80-100 km depth that involve the rheology of the incoming seafloor (presence of fracture zones or seamounts) and its capability to store fluids. We hypothesize that regions where very strong conductive anomalies are observed in the mantle wedge at depths of about 80-100 km are related to the subduction of anomalous seafloor, either related to excessive fracturing of the crust (e.g., fracture zones), subduction of seamounts, or other ridges and areas of high relief. These features deform the seafloor prior to entering the trench, permitting more widespread serpentinization of the mantle than would otherwise occur. An alternative explanation is that the large conductors represent melts with higher contents of crustal-derived volatiles (such as C and H), suggesting in particular locally higher fluxes of carbon into the mantle wedge, perhaps also associated with subduction of anomalous seafloor structures with greater degrees of hydrothermal alteration. This research on subduction is supported by NSF-EAR Petrology and Geochemistry.

RECENT PUBLICATIONS

DAVID T. SANDWELL
Professor of Geophysics
dsandwell@ucsd.edu, http://topex.ucsd.edu

Research Interests: Geodynamics, global marine gravity, crustal motion modeling, space geodesy

Students and Funding: Research for the 2016-17 academic year was focused on understanding the dynamics of the crust and lithosphere. Our group comprises four graduate students Eric Xu, John DeSanto, Hugh Harper, Hiroki Arai, and one lab assistant Ben Tea. Brook Tozer will join our group as a postdoc in early 2018. Our research on improvement the marine gravity field is co-funded by the National Science Foundation (NSF) and the Office of Naval Research (ONR). The NASA Earth Surface and Interior Program as well as the Southern California Earthquake Center provides funding for our research on the strain rate and moment accumulation rate along the San Andreas Fault System from InSAR and GPS.

Global Gravity and Bathymetry: We are improving the accuracy and spatial resolution of the marine gravity field using data from three new satellite radar altimeters (CryoSat-2, AltiKa and Jason-2). This is resulting in a factor of 2-4 improvement in the global marine gravity field. Most of the improvement is in the 12 to 40 km wavelength band, which is of interest for investigation of seafloor structures as small as 6 km. The improved marine gravity is important for exploring unknown tectonics in the deep oceans as well as revealing thousands of uncharted seamounts (Matthews et al., 2016; Zhang and Sandwell, 2016; http://topex.ucsd.edu/grav_outreach).

Integration of Radar Interferometry and GPS: We are developing methods to combine the high accuracy of point GPS measurements with the high spatial resolution from radar interferometry to measure interseismic velocity along the San Andreas Fault system (Figure 42) associated with earthquake hazard (Xu et al., 2017). Over the past three years, three new InSAR satellites became operational. Sentinel 1A and 1B are the first of a series of European Space Agency (ESA) SAR satellites to provide an operational mapping program for crustal deformation along all zones having high tectonic strain. The third new satellite is ALOS-2, launched by JAXA. These satellites have the measurement cadence and spatial coverage needed to revolutionize our understanding of earthquake cycle processes both globally and along the San Andreas Fault System (Figure 42). The InSAR processing was performed with new geometric alignment software (Xu et al., 2017) which is now part of GMTSAR developed at SIO (http://topex.ucsd.edu/gmtsar).

RECENT PUBLICATIONS

ANNIKA SANFILIPPO-HOWARD
Specialist, RTAD
annika@ucsd.edu, 858-534-2049

Research Interests: Radiolarian taxonomy, evolution, and biostratigraphy, correlation of Cenozoic marine sequences to investigate extinction and diversification patterns associated with climate change.

Current and Ongoing Efforts: Investigations of Cenozoic low-latitude, Southern Ocean, mid-latitude and southwestern Pacific radiolarian biostratigraphic data and new magnetostratigraphic calibrations towards an integrated cross-latitudinal event stratigraphy.

Together with SIO Geological Collections manager Alex Hangsterfer progress is being made toward revitalization and inventory of unique, retired and/or orphaned paleontological collections acquired over the years, to make them available to future scientists. This includes developing a database to make the Riedel and Sanfilippo radiolarian slide collection more accessible. The database will contain existing data related to locality, age determination, radiolarian abundance, preservation, slide storage, sample storage etc.

As the curator for the U.S. West Coast Repository for the DSDP/ODP Micropaleontological References Centers (MRC) I continue to inventory new radiolarian slides that are periodically added to the MRC collection. Radiolarian microfossil slides containing type and figured specimens described in publications throughout my career have been inventoried, and will be deposited in the U.S. National Museum, Washington, D.C. Hollis, C.J., Pascher, K.M., Kamikuri, S., Nishimura, A., Suzuki, N. and Sanfilippo, A., 2017. Towards an integrated cross-latitude event stratigraphy for Paleogene radiolarians.

RECENT PUBLICATIONS

The abstract of the above paper was presented as a poster at the GSA meeting in Vancouver, BC, Oct. 20-24, 2014. (Ref: Abstract No: 247919)
PETER SHEARER
Distinguished Professor
pshearer@ucsd.edu, 858-534-2260

Research Interests: Seismology, Earth structure, earthquake physics

My research uses seismology to learn about Earth structure and earthquakes, using data from the global seismic networks and local networks in California, Nevada, Hawaii, and Japan. My work in crustal seismology has focused on improving earthquake locations using waveform cross-correlation, systematically estimating small-earthquake stress drops from P-wave spectra, and studying properties of earthquake clustering, especially swarms and foreshock sequences.

Graduate student Daniel Trugman applied an improved spectral decomposition approach to estimate stress drops within five regions of dense seismicity in southern California (Trugman and Shearer, 2017b). The results show that average stress drop increases with moment for each region, a clear break from earthquake self-similarity, but a result that depends upon the assumed high-frequency falloff rate. Daniel also refined and improved our earthquake relocation codes into the software package GrowClust (Trugman and Shearer, 2017a) and applied it to two recent earthquake swarms in Nevada, which yielded dramatically sharpened images of the seismicity (see Figure 44). Graduate student Wei Wang performed a comprehensive analysis of coda waves in southern California and showed how they can be modeled using a multiple-scattering Monte Carlo seismic phonon algorithm to determine the best-fitting 1-D model of scattering properties and intrinsic attenuation (Wang and Shearer, 2017).

On a more regional scale, postdoc Janine Buehler used Pn and Sn arrivals from the USArray experiment to resolve lateral variations in the upper-mantle velocity structure under the United States, including anisotropy, Vp/Vs ratios, and variations in the velocity gradient (Buehler and Shearer, 2016b). Her results indicate partially molten mantle beneath the Snake River Plain and the Colorado Plateau and changes in the orientation of azimuthal anisotropy with depth. Janine also used USArray data to quantify event location uncertainty across North America through the use of source-receiver reciprocity, i.e., by “relocating” seismic stations based on their travel-time residuals (Buehler and Shearer, 2016a).

Figure 44. Comparison of initial catalog earthquake locations and GrowClust relocations for the 2012–2015 Spanish Springs, Nevada, sequence. (a, catalog) and (b, GrowClust) provide a map view comparison of the initial and relocated event positions. (c, catalog) and (d, Growclust) provide a comparison of fault-parallel and fault-perpendicular cross.
Using global seismic data, Green Scholar and postdoc Shawn Wei studied SS precursor waveforms and identified anomalous reflections from the 410-km discontinuity that require the presence of a low-velocity layer (LVL) just above the interface, likely caused by partial melting due to dehydration of ascending mantle across the 410-km discontinuity, which is predicted by the transition zone water filter hypothesis (Wei and Shearer, 2017). This suggests partial melting with varying intensities across the Pacific and provides indirect evidence of a hydrous mantle transition zone with laterally varying water content.

RECENT PUBLICATIONS

Figure 45. A map of the western Pacific, showing the locations in dark blue where a low velocity layer (LVL) above the 410-km discontinuity is indicated by SS precursor observations.
LEONARD J. SRNKA
Professor of Practice
lsrnka@ucsd.edu, 858-822-1510

Research Interests: Land and marine electromagnetic (EM) methods; integrated geophysical data analysis and interpretation; inverse theory; energy outlooks and global change

In the fourth year of my SIO appointment, I completed my involvement in research started in 2006 whilst at ExxonMobil’s Upstream Research Center on novel airborne Earth-field (~2.2 kHz) nuclear magnetic resonance (NMR) techniques for detecting contaminates in the shallow subsurface. I am first inventor on the 2013 US patent 8,436,609 that describes the method. Among other near-surface applications, this technology is particularly well suited for detecting oil under ice and snow, which is a crucial environmental need in the Arctic (Chavez et al., 2015) as the international hydrocarbon industry continues to evaluate the resource potential of the region. The research fits well in the SIO theme “Understanding and Protecting the Planet”. The research led to a unique transmitter/receiver antenna design and signal protocol for T2 and T2* relaxation responses to detect oils of various properties in the presence of the huge water-proton NMR signal. The work was done in conjunction with several geophysical service companies. A full-scale prototype using a helicopter-slung system was tested successfully in NE Canada in October 2016 (Figure 46) using a simulated Arctic environment. I did not directly participate in this latest test.

My research in seafloor electromagnetics continues on re-examining CSEM data acquired in the San Diego Trough in May-June 2006 in about 900m water depth using the R.V Sproul and R.V. New Horizon. Novel electric field gradient measurements were taken using tandem long-wire electric (LEM) receivers pioneered by Professor Steve Constable. Nearby magnetotelluric (MT) measurements across the Catalina Crater, acquired for a separate project but whose data overlap the CSEM data in time, are being examined as candidates for use in pre-stack CSEM noise suppression methods similar to those used in the seismic reflection industry.

RECENT PUBLICATIONS

Figure 46. Test of an airborne earth-field NMR system for detecting near-surface contaminants. Image courtesy of ExxonMobil.

Figure 47. Map of the 2006 San Diego Trough and Catalina Crater SIO seafloor electromagnetic research surveys. The SAIC MT sites were acquired for a separate project. Data from the red MT sites, deployed earlier, are not being used in the current research.
KAREN STOCKS
Director, Geological Data Center

kstocks@ucsd.edu, 858-534-1898, gdc.ucsd.edu

Research Interests: documentation, discovery, access, integration, and curation of oceanographic data. Expertise includes information systems for vessel-based sensors, scientific ocean drilling, biodiversity and biogeography, metagenomics, and ocean observing systems.

The Geological Data Center (GDC) at Scripps Institution of Oceanography has a mission to archive and provide access to marine data, particularly from SIO vessels. Current projects of the GDC include:

1. Rolling Deck to Repository, an effort to capture, document, and submit for archive underway data from the US fleet of academic research vessels (www.rvdata.us). ~400 cruises of data from 26 vessels were processed this past year.

2. Supporting the IT needs of the Science Support office of the International Ocean Discovery Program, including a database and portal for scientific drilling data (ssdb.iopd.org).

3. The SeaView project, working to make the data from five oceanographic data repositories more usable and interoperable (www.seaviewdata.org). In the past year, SeaView published three new collections of highly integrated data, one around the Bermuda-Atlantic Time-Series station, one from the Hawaii Ocean Time-series region, and one from the Mid-Atlantic Bight around the OOI Pioneer Array.

4. Curating 50+ years of SIO vessel data, both digital and analog (siox.sdsc.edu).

RECENT PUBLICATIONS

LISA TAUXE
Distinguished Professor
ltauxe@ucsd.edu, 858-534-6084

Research Interests: Behavior of the ancient geomagnetic field. Statistical analysis of paleomagnetic data. Applications of paleomagnetic data to geological problems.

The research during 2016 of myself and my students and post-docs was primarily focused on the field of archaeomagnetism, a line of research that combines the disciplines of paleomagnetism and archaeology. Three current and former post-docs in the Scripps Paleomagnetic Laboratory produced new constraints on the geomagnetic field variations of the Levant (Shaar et al., 2016) and China (Cai et al., 2016) and applications of such regional field behavior to solving archaeological problems (Ben-Yosef et al., 2016).

On another related front, we made some progress toward the goal of Open Science. Breakthroughs in paleomagnetic and rock magnetic research increasingly rely on the ability to draw on archives of previously collected data. The ability to merge published data with new results, and to ‘reuse’ published data in applications to new problems is an exciting possibility. The Magnetics Information Consortium (MagIC) database (http://earthref.org/MagIC) provides an archive with a flexible data model for paleomagnetic and rock magnetic data. To facilitate this effort, we published the PmagPy software package (Tauxe et al., 2016). PmagPy is a cross-platform and open-source set of tools written in Python for the analysis of paleomagnetic data that serves as one interface to MagIC. We documented the PmagPy software package (archived at github) and illustrated the power of data discovery and reuse through a reanalysis of published paleointensity data.

Figure 49. a) Locations of studies included in compilation of Shaar et al., 2016 for the Levantine Archaeomagnetic Curve. b) Colored filled symbols show sites with measurement data in the MagIC database (http://earthref.org/MagIC). b) Geomagnetic field intensity in the Levant from 3500 BCE to 400BCE [Figure from Shaar et al., 2016]. Open gray symbols are other published data from Syria. Solid curves show prediction of global geomagnetic models for Jerusalem. All references are in (Shaar et al., 2016). There is an excellent agreement between the different datasets. The data show a steady increase in field intensity from a minimum value at ca. 1800 BCE to a geomagnetic maximum (Iron Age Levantine Anomaly) between the 10th and the 8th centuries with two spikes events.
RECENT PUBLICATIONS

FRANK VERNON
Research Geophysicist
flvernon@ucsd.edu, 858-534-5537

Research Interests: Earthquake source physics and ground motion estimation. Time series analysis applied to terrestrial and space data. Development of instrumentation that improves the observation and understanding of seismic measurements. Realtime environmental sensor networks and wireless networking.

I am the principal investigator for the ANZA Seismic Network that monitors local and regional seismicity in southernmost California. The ANZA seismic network currently consists of twenty-eight operational stations. Most of the stations are located along the San Jacinto fault starting with IWR and RDM towards the top of the map, and TONN and USGCB on the right side of the map. The San Jacinto fault is one of the two most dangerous faults in southern California, the other being the San Andreas Fault. The ANZA network is the foundation for the San Jacinto Fault Zone project in collaboration with Yehuda Ben-Zion to examine the dynamics associated with earthquake rupture. The studies being carried out are providing much more comprehensive constraints on the way that a major fault zone behaves. Specifically, the project combines detailed imaging of the San Jacinto Fault (SJF) in Southern California using multiple seismic arrays to characterize the fault zone in the subsurface. In the late Spring of 2014, we had the opportunity to deploy the first complete academic "Large N" experiment to observe the unaliased two dimensional seismic wavefield. This experiment deployed 1108 vertical instruments in an area 600 meters by 600 meters, spanning the surface trace of San Jacinto Fault at Sage Brush Flats. Since then we have deployed 100 element three component linear fault crossing arrays at Blackburn Saddle (2015), Ramona Indian Reservation (2016), and Sage Brush Flats (2017).

My group operates the Array Network Facility for the USArray project Transportable Array. The core of the USArray project is known as the Transportable Array (TA) comprised of -500 broadband seismic stations deployed in a nominal 70 km grid bordered by the borders of the lower 48 states. Each station was deployed ~2 years and the TA is moved in a rolling manner to the east. At present, the ANF facility is already operating the largest broadband seismology system in the world. USArray finished up in the Lower 48 and is now deploying instruments in Alaska, creating a whole new set of challenges. USArray was the foundation of the Central and Eastern US Network, which is continuing to operate in the eastern United States.
The other major program I am involved in is the HPWREN program creating a largescale wireless high-performance data network that is being used for interdisciplinary research and education applications, as well as a research test bed for wireless technology systems in general. HPWREN provides wide area wireless internet access throughout southernmost California including San Diego, and Riverside counties and the offshore regions. Under UCSD’s HPWREN program, research being conducted on building “last kilometer” wireless links and developing networking infrastructure to capture real-time data from multiple types of sensors from seismic networks, hydrological sensors, oceanographic sensors, wildfire cameras, meteorological sensors, as well as data from coastal radar and GPS. HPWREN is in the process increasing network capacity to support new innovative wildfire camera systems such as the AlertSDGECamera system.

Recent Publications

Tectonics, erosion, chemical weathering, and life work together to form the Earth’s surface environment where we live and work. As scientists continue to break traditional disciplinary boundaries, we find that little of nature can be fully understood in isolation. For example, weathering in soil liberates nutrients from minerals and disaggregates rock to make soil. The breakdown of silicate minerals regulates global temperatures in a habitable limit through feedbacks within the carbon cycle. John Muir best said it when he wrote in 1911 in My Life in the Sierras, “When we try to pick out anything by itself, we find it hitched to everything else in the Universe.”

How does the Earth’s surface respond to perturbations—anthropogenic and natural? How much does Earth change over time (Willenbring and Jerolmack, 2016; McElroy et al., 2017)? Studies of modern landscapes provide valuable insights into these processes, help to identify primary controls, and contribute to unraveling potential feedback mechanisms. Understanding the magnitudes of past and modern fluxes and rates of surface processes provide empirical data with which we can begin to understand the extent of human alteration of the environment and possible geomorphic effects of a warmer Earth in the geologic past and in the future (Garcin et al., 2017; Pfeifer et al., 2017).

My group uses geochemical techniques, high-resolution topographic data, field observations, and, when possible, I couple these data to landscape evolution numerical models and ice sheet models. The geochemical tools I use and develop often include cosmogenic nuclide systems, which provide powerful, novel methods to constrain rates of erosion, mineral weathering and dating landforms (Valletta et al., 2017). Beryllium isotopes can quantify the rates of soil production, erosion, and remobilization and recent work develops one beryllium isotope as a proxy for the flux of weathering products to the oceans. These geochemical tools have revolutionized our understanding of the evolving earth surface for decades. Although beryllium isotopes sorbed to sediments are now being measured extensively to understand movement of soil particles and the natural feedbacks that operate in the Earth system, we lack an understanding of the mechanisms of adsorption and desorption processes that are critical for the interpretation of new data produced (Boschi and Willenbring, 2016a,b).

Recent landscape and ecosystem research from 2016 (Brocard et al., 2016; Wolf et al., 2016) was focused on understanding how river erosion and soil properties regulate many ecosystem processes in tropical forests. Rapid upslope migrations of plant species are occurring on tropical mountains, but the drivers of current community composition and community reassembly during upslope migration remain poorly understood. We use indicators of landscape transience, such as waterfalls and the shapes of longitudinal profiles of rivers, and cosmogenic nuclides to understand real, natural barriers to ecosystem response to climate change. We also are starting to learn about what are the principle controls on landscape evolution and river network rearrangements, and how these processes contribute to the formation of highly biodiverse tropical aquatic ecosystems?

My group and I also work to apply basic science concepts to problems of human health (Miller et al., 2017). We are attempting to understand how to cover asbestos piles so minimize transport of the asbestos and to bioremediate the asbestos fibers in place chemically (Salamatipour et al., 2016; Gonneau et al., 2017; Mohanty et al., 2017). I also run a citizen science campaign to assess lead in the environment (“Soil Kitchen”) and to counsel people on what to do if they have high lead in their soil and water.

RECENT PUBLICATIONS

B indicates a trainee publication

PETER WORCESTER
Researcher Emeritus
pworcester@ucsd.edu, 858-534-4688

Research Interests: Acoustical oceanography, ocean acoustic tomography, underwater acoustics.

My research is focused on the application of acoustic remote sensing techniques to the study of large-scale ocean structure and on improving our understanding of the propagation of sound in the ocean, including the effects of scattering from small-scale oceanographic variability.

My recent research has been focused in the Arctic Ocean, which is undergoing dramatic changes in the ice cover and ocean structure. Changes in sea ice and the water column affect both acoustic propagation and ambient noise. This implies that what was learned about Arctic acoustics in the past is now obsolete. My group has conducted or participated in a series of experiments in the Arctic.

Thin-ice Arctic Acoustic Window (THAAW). A Distributed Vertical Line Array (DVLA) receiver mooring was deployed near the North Pole during April 2013. The mooring line parted above the anchor shortly after deployment, and the mooring drifted slowly south toward Fram Strait in the Transpolar Drift, providing a time series of ambient noise until it was recovered in September 2013 (Ozanich et al., 2017).

DAMOCLES, ACOBAR, and UNDER-ICE. My group participated in a series of ocean acoustic tomography experiments in Fram Strait that were led by our colleagues at the Nansen Environmental and Remote Sensing Center (NERSC) in Bergen, Norway (Geyer et al., 2016; Sagen et al., 2017).

Canada Basin Acoustic Propagation Experiment (CANAPE). CANAPE was designed to determine the fundamental limits to the use of acoustic methods and signal processing imposed by ice and ocean processes in the new Arctic. To achieve this goal, the CANAPE project conducted two experiments: (1) the short term 2015 CANAPE Pilot Study and (2) the yearlong 2016–2017 CANAPE experiment. The hope is that these first steps will lead to a permanent acoustic monitoring, navigation, and communications network in the Arctic Ocean. The specific goals of the CANAPE project include (1) understanding the impacts of changing sea ice and oceanographic conditions on acoustic propagation and fluctuations; (2) characterizing the depth dependence and temporal variability of the ambient noise field; and (3) measuring the spatial and temporal variability in the upper ocean throughout the annual cycle by combining acoustic and other data with ocean models.

For the 2016–2017 CANAPE experiment, six acoustic transceiver moorings and a DVLA receiver mooring were deployed north of Alaska during August-September 2016 and recovered during September-October 2017 (Figure 51). The experiment combines measurements of acoustic propagation and ambient noise with the use of an ocean acoustic tomography array to help characterize the oceanographic variability throughout the year in the central Beaufort Sea. The one-year deployment in a fixed

Figure 51. The 2016–2017 CANAPE experiment consisted of six Teledyne Webb Research acoustic transceivers (WRC, green) and a DVLA receiver (DVLA, red). The array radius is 150 km.
geometry provides measurements in open water during summer, in the marginal ice zone (MIZ) as it transitions across the array during the spring and autumn, and under complete ice cover during winter. Processing and analysis of the data acquired during the 2016–2017 CANAPE experiment has just begun.

RECENT PUBLICATIONS

DISTRIBUTED ACOUSTIC SENSING WITH AN OPTICAL FIBER IN THE SAFOD BOREHOLE
(with William Ellsworth, Stanford University, and Martin Karrenbach, OptaSense)

There is a new sensing technology, Coherent Optical Time Domain Reflectometry, that is potentially transformative in geophysics. It allows strain along the length of a standard telecommunications optical fiber to be sampled at hundreds of Hz at thousands of intervals a few meters apart with a strain resolution below a nanostrain, far surpassing the capabilities seen in the older techniques. It converts a standard optical fiber cable into a dense, linear seismic array.

We tested the new OptaSense interrogator on an optical fiber that extends from the surface to 864 m depth in the San Andreas Fault Observatory at Depth (SAFOD) in central California. Soon after installation, a magnitude 1.4 earthquake occurred 10 km directly beneath the borehole. Figure 53 shows the resulting seismogram (processed by M. Karrenbach of Optasense). The instrument was configured for a 10 m gauge length and 1 m spacing, and about 80 m of cable exists between the recording unit and the wellhead. Therefore channel number 80 (labeled along the top axis of the figure) corresponds to the surface and channel 900 is at about 820 m depth.

RECENT PUBLICATION

Figure 52. In this new transduction method, advanced by the commercial firm Optasense, two pulses closely spaced in wavelength, are injected in the fiber, separated by the desired length (i.e., time) of the virtual strain gauge sensors, say 10 m. Rayleigh backscatter from the two pulses interfere with each other, manifested at the optical detector as a self-demodulated signal at a frequency equal to the difference between optical frequencies of the pulses. The phase of this RF signal is the same as the difference in optical phase between the two scattering regions, which is a measure of the combined strain and index of refraction change in the virtual strain sensor between the two pulses. For each range bin (designated by time-division multiplexing), the system provides a measure of this phase for each optical pulse pair, and thus a calibrated phase-coherent time series for each virtual sensor every 1 m (or other desired “virtual” sensor separation) down the fiber. (Diagram provided by OptaSense).
Figure 53. Each vertical slice of the figure is a seismogram with a duration of about a half second. The P and S waves, arriving at the lowest segment first, are clear, as are surface reflections. These data are collected from a single optical fiber.
IMAGES: Cover (top): Former Scripps graduate student Yuichiro Takeshita with BEAMS on Palmyra coral reef. Todd Martz led the development of the Benthic Ecosystem and Acidification Measurement System (BEAMS) to measure biochemical variables commonly used to gauge the health of coral reefs. (bottom): Yehuda Bock and his colleagues using lasers and drones to create a digital record of Geisel Library. Photo: Erik Jepsen/UC San Diego Publications. Inside: The front of the Ross Ice Shelf floats in the Ross Sea, as seen from the cockpit of an LC130 aircraft flown by the New York Air National Guard. Photo: Matt Siegfried.