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October 13, 2014: Origins of Modern Climate Research

Historical pioneers; the greenhouse effect; the increase of atmospheric CO2 concentrations; earth system
science, climate models, space observations; earth’s radiation balance and carbon cycle;
hard truths about climate change; ethical dilemmas; governance



Avoid The Unmanageable, Manage the Unavoidable

Eight Interdisciplinary Lectures on Climate Change by Charles F. Kennel
Monday Evenings, 5:30-7 pm, Martin Johnson House, except for Nov 3, Sumner Hall
Scripps Institution of Oceanography, University of California San Diego

Oct 13: Origins of Modern Climate Research
Historical pioneers; the greenhouse effect; the increase of atmospheric CO2 concentrations; earth system science, climate models,
space observations; earth’s radiation balance and carbon cycle; hard truths about climate change; ethical dilemmas; governance

Oct 20: Paleoclimatology
Earth’s climate in the past 65 million years; orbital forcing and ice ages; instability of ice age climates; abrupt events; volcanoes, ice,
and ocean circulation; our benign interglacial; medieval warm period and little ice age; the Anthropocene

Oct 27: Arctic Climate Change and the Present Hiatus in Warming
Why the global temperature has been constant during the past sixteen years, yet Arctic warming has accelerated and extreme events
have increased; world-wide impact of sea ice retreat; ecological, economic, and diplomatic aspects of Arctic climate change

Nov 3: How Climate Change could affect us in the next 50-100 years
Inferring from today’s changes and climate models what tomorrow’s world might look like; Regional weather patterns, water
availability, floods, drought, wildfires; Impacts on agriculture, ecology, human disease, regional technical systems

Nov 10: How we can slow the pace of climate change; why we still will have much to adapt to
The failure of the climate negotiations; the inertia of the of the global energy system; slowing climate change by working with short-
lived climate pollutants; why we probably cannot avoid 2 degC warming at mid-century; the case for adaptation

Nov 17: Adaptation Risks: Sea Level Rise, Coastal Cities, and Island Nations
Factors affecting rates of global and local sea level rise; How advanced regions are preparing-Venice, the Netherlands, Sacramento
Bay-Delta; Vulnerable cities, agricultural river deltas, low-lying island nations

Nov 24: California Prepares to Adapt

The El Nino, atmospheric rivers, floods and droughts, water resources and management; how California learned from air pollution;
California’s regional assessments; Impacts on regional natural systems, regional technical systems, and populations

Dec 1: Global Adaptive Management of Climate Change

The essential role of assessment in the adaptive management of complex systems; the regional specificity of climate change impacts;
the critical role of local communities; the complexity of knowledge assembly for regional and local decision-support; the need to
encourage timely decisions; and the capacity problem; how “Knowledge Action Networks” comprising international experts and local
decision-makers could inform and motivate good decisions



A Timeline of Atmospheric Science

Crutzen, P. J., & V. Ramanathan, The Ascent of Atmospheric Sciences, in
“Pathways of Discovery”, Science, 290, 13 October, 2000.
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Fahrenheit's first thermometers contained a column of alcohol which expanded and
contracted directly. Fahrenheit substituted mercury for alcohol because its rate of
expansion, although less than that of alcohol, is more constant. Furthermore, mercury
could be used over a much wider temperature range than alcohol.

( Crutzen and Ramanathan,2000)



Instrumental Weather Data

Temperature Record for Central England from 1659

England & Wales Precipitation from 1766
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The First Weather Forecasts

Vice-Admiral Robert Fitzroy RN, 1805-1865
Captain of HMS Beagle, 1831-1836; Founder of the UK Met Office, 1854
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Fitzroy’s technology-driven empiricism did not satisfy the savants of the Royal Society who, with some justification,
complained there was no theoretical basis for the weather forecast. But, no-one then could solve the Navier-Stokes

equations, either. In fact, today’s forecasting blends theory-based computations and empirical data.



Lewis Fry Richardson’s Forecast Factory, 1922

Numerical algorithm needed 64,000 human “computers”
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The First Electronic Weather Calculations

Institute for Advanced Study, Princeton, 1950
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If the earth were a perfect black body with no atmosphere....
it would absorb solar energy until it glows in the infrared. The surface temperature
at which solar radiation in balances infrared radiation out is -18 degC.

The observed temperature is + 14 degC.




Solar radiation powers
the climate system.

Some solar radiation
is reflected by
the Earth and the
atmosphere.

About half the solar radiation
is absorbed by the

Earth’s surface and warms it. Infrared radiation is
emitted from the Earth’s

surface.




Joseph Fourier John Tyndall Svante Arrhenius Guy Callendar Charles Keeling
(French, 1768-1830) (English, 1820-1893) (Swedish, 1859-1927) (English, 1898-1964) (American, 1928-2005)

Pathways of Discovery

Herschel (1800): Discovery of infrared heat radiation
Fourier (1825-27): Greenhouse effect keeps the earth warmer than expected from
visible solar radiation energy flux alone
Tyndall (1850s): Atmospheric H20, CO2 selectively absorb infrared radiation
Arrhenius (1896): Fossil fuel CO2 should cause global warming
Callendar (1938): Global land temperatures had increased in previous 50 years
Revelle and Suess (1957): Oceans cannot absorb all the increase in CO2 concentration
Keeling (1957-2005): Atmospheric CO2 is increasing at rate consistent with fossil fuel sources




“A Great One-Time Geophysical Experiment”

Could not have happened in the past nor be reproduced in the future

Roger Revelle,
- 1909-1991

In those pre-Anthropocene days, people thought that the vast oceans would easily absorb the
atmospheric carbon dioxide produced by human industrial activity. In a landmark paper, Revelle and
Hans Suess (1957) ascertained the rate of CO2 exchange between the atmosphere and sea water. They
estimated the CO2 lifetime to be 20 years. A fair fraction of the CO2 humans are producing would
therefore accumulate in the atmosphere. The next question was, is it increasing? This needed to be

measured, not calculated, and Revelle brought Dave Keeling to Scripps from CalTech.



Charles David Keeling, 1928-2005

Only two other data sets changed science and society as much:
Tycho’s (Planetary Orbits) and Michelson’s (Speed of Light)
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Because of CO2s long lifetime in the atmosphere, it would be well-mixed and evenly
distributed globally. A'measurement at a single location far from local sources would suffice
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Carbon Dioxide and Climate:
A Scientific Assessment

Repar( of an Ad Hoc Study Group on Carbon Dicxids and Climate
Woods Hole, Massachusetts

July 23-27, 1879

to Lthe

(limate Research Board

Assenbly of Mathemarical and Physical Sviences

National Rescarch Council

Jule Charney

NATIONAL ACADEMY OF SCIENCES
Wushington, D.C. 197¢

Things that are still true:

“The primary effect of increased
atmospheric CO2 on climate... is to
cause more absorption of thermal
radiation from the earth’s surface and
thus to increase the air temperature....

When...the CO2 content of the
atmosphere is doubled and ...
equilibrium is achieved,...

modeling efforts predict a global
surface warming of between 2°C and
3.5°C,with greater increases at high
latitudes...

....the warming will eventually occur,
and the associated regional climatic
changes (will be) so important (that)
socioeconomic consequences may... be
significant”



Reorganization of the
Earth Sciences

Earth System Science
Planetary Subsystems
Observing Systems
Cyber-Infrastructure



Earth System Science

Interdisciplinary Science for the Anthropocene

Physical Climate System
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Change
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Centuries, not Eons
Francis Bretherton, 1982 ff.



Interacting Planetary Subsystems

The Climate system
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Weather Satellites

Nimbus-1 (1964) first weather satellite
Global observations extended forecasts out to 7 days
Enabled storm track projections
Dramatically improved empirical data needed for climate purposes

GEOSTATIONARY

Weather
Satellite
Orbits




Earth Observing System, 1990-

Multi-Disciplinary Observations for Earth System Science
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6 -12 hours at surface
to transmit data to satellite

Descent to cruising depth
~10 cm/s (~6 hours)

ARGO

Drift approx. 9 days
Total cycle time 10 days
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Cyber-Infrastructure

The Earth Observing System’s Data and Information System (EOSDIS) pioneered
collection, integration, analysis, and distribution of “big data”; modeling used the
data to create understanding and make projections

Seasonal Average QRS, 1988-97
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Atmosphere-Ocean General Circulation Models

Richardson’s dream realized




The World in Global Climate Models

Mid-1970s Mid-1980s
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Key Achievements

Earth’s Radiation Balance
Global Carbon Cycle
Circulation of Oceans and Atmosphere
Role of Cryosphere
Greenhouse Gas Emission Inventory

Global Temperature Increase



Follow the Energy

Contemporary Radiation Balance

IPCC ARS 2013
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Follow Carbon Dioxide

Terrestrial and Oceanic Inventories and rates of exchange with the atmosphere

Vegetation 610
16




Oceans Absorb ~ 25% of Anthropogenic CO2

Resulting acidification has profound implications for shelled marine life
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Scott C. Doney et al, Ocean Acidification-a critical emerging problem for the ocean sciences, Oceanography, 22, no 4, 2009



Terrestrial Biosphere Absorbs ~ 25% of Anthropogenic CO2

Net Primary Productivity
Rate of Carbon Take-up by Photosynthetic Growth of Vegetation on Land

NPP,
[gC/m3yr]
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Plant growth in northern hemisphere spring and summer draws down CO2, accounting
for Keeling’s seasonal cycle. The global growing season has lengthened by several
weeks since Keeling started taking data. The Northern Hemisphere has been “greening”



Land Cover Change

Essential for understanding ecology’s role in climate change
Human land use has played a role in climate since the agricultural revolution

B Forest (21%) [ Savannas (14%) [l Croplands (9%) Croplands (2%) Il Wetlands (0.2%)
[] Shrublands (19%) [__] Grasslands (9%) [l Urban (0.5%) [ ] Barren (14%) [ | Other (11%)

Source: University of Texas
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Halley Quantified

Net radiative warming drives equator-to-pole circulation of both atmosphere and ocean
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Cold saline
deep current




Legend
. Sea Ice
. Glaciers

W ice Sheet

. Ice Shelves

- Continuous Permafrost
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~ Sea Ice 30 Yr Ave Extent
50% Snow Extent Line
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Cryosphere

Ice, Snow, & Permafrost
80 % of world’s fresh water

Thermal balance

Ocean and Atmosphere Circulation

Sea level rise
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Industrial Period, 1850-2012

Global Average Annual Land + Sea Surface Temperature
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“It is certain that Global Mean Surface Temperature has increased since the late 19th century. Each of the past three
decades has been significantly warmer than all the previous decades in the instrumental record, and
the first decade of the 21st century has been the warmest”. IPCC AR5, Chapter 2, 2013




Oceans absorb 93% of the energy added to

(a) the climate system by humans
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Hard Truths

CO2’s Atmospheric Lifetime is 100 Years
Ocean Heat Storage Time is 1000 Years



Implications of Oceanic and Carbon Cycle Inertia

CO, concentration, temperature, and sea level
continue to rise long after emissions are reduced

Magnitude of response Time taken to reach
equilibrium

Sea-level rise due to ice melting:

CO, emissions peak i several millennia

0 to 100 years s :
y o Sea-level rise due to thermal

expansion:
centuries to millennia

Temperature stabilization:
a few centuries

CO; stabilization:
100 to 300 years

CO, emissions

Today 100 years 1,000 years

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

We cannot avoid significant climate change because of what we have already done, much less what we are about to do



The oceans, right now our friend, are
storing up problems

The oceans are helping us by taking up 25% of
the CO2 and 93% of the energy added to the
climate system by humans. If and when we
reduce CO2 emissions, dissolved CO2 and
embedded ocean heat will be released to the
atmosphere until the entire ocean has
equilibrated with the atmosphere. This will
take about 1000 years. Climate change will be
a problem for at least that long.
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Deep emissions reductions
(>80%) would be required for
long-term stabilization of
carbon dioxide at any chosen
target (450, 550, 650 ppm....).

AND

Emission reductions near
100% would be required for
manmade CO, to decline from
any peak it reaches.

lllustrative calculations showing CO2 concentrations and related warming in two models for a test case in which
emissions first increase, followed by a decrease in emission rate of 3% per year to a value 50%, 80%, or 100% below the
peak. The test case with 100% emission reduction has 1 trillion tonnes of total emission.



Long-Term Global Temperature Increase is Almost
Linearly Related to Cumulative Carbon Emission

Best estimates and likely range of cumulative carbon emissions that would
result in global warming of 1, 2, 3, 4, or 5°C.
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Global Mean Temperature Change

It does not matter when the emissions occur. Given a maximum tolerable temperature
increase, ongoing emissions draw down a finite “carbon account”



(a) Global average surface temperature change
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Climate change for the next 25-30 years is mostly built in. IPCC AR5
models suggest that the pace of climate change could double.



The Grand Ethical Dilemma

The global distribution and long lifetime of carbon dioxide give rise
to major intergenerational ethical issues

Things humans are doing today will change the climate and
conditions for all life in unknown ways for thousands of years.

The CO2 emissions each of us causes today do not affect us

directly but change the climate for every human on earth in the
next generation

Present generations pass on climate risk to future generations
as well as assets such as knowledge and infrastructure. The
intergenerational challenge is to strike a balance between

incurring future climate debt and present investment for that
future



The Grand Political Dilemma

The global distribution and long lifetime of carbon dioxide shape the
configuration of political issues in climate change

Everyone causes climate change and everyone is affected by it. The climate
negotiations therefore seek inclusive global consensus, but this may be impossible
to achieve

Actions to reduce CO2 emissions affect the climate decades later. Those who make
the effort do not reap the benefits in their lifetimes.

The free-rider problem: those who did not make the effort will reap benefit from the
actions of those who did

CO2 emissions are a fundamental byproduct of the contemporary industrial system,
which is bringing prosperity and social advancement around the world. The
centrality of fossil fuels in today’s global economy is pitting those who value the free
market system and present prosperity against those who believe that dealing with
climate change is an absolute moral imperative.

Climate change is similar to slavery and colonialism. All three are global issues in
which economic benefits for some contest with moral views of others. Colonialism
and slavery took a century to solve, not without great conflict



Climate Governance
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United Nations Framework Convention on Climate Change

Adopted by UN, New York, 9 May 1992; Signed by US, 12 June, 1992; Ratified by Senate, Oct 15, 1992
Entered into force, 21 March, 1994; now, 196 parties to the Convention

The long-term objective of the Convention and its related legal
instruments is “to achieve [...] the stabilization of greenhouse gas
concentrations in the atmosphere at a level that would prevent
dangerous anthropogenic interference with the climate system”
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The Intergovernmental Panel on Climate Change

The most rigorous reviews of a state of scientific knowledge ever attempted.

WMO UNEP

IPCC Plenary 1PCC Secretariat
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The IPCC was established by WMO and UNEP in 1988 to “assess on a comprehensive
objective, open, and transparent basis the latest scientific, technical and socio-economic
literature produced worldwide relevant to the understanding of the risk of human-
induced climate change, its observed and projected impacts and options for adaptation
and mitigation. IPCC reports should be neutral with respect to policy, although they need
to deal objectively with policy relevant scientific, technical and socio-economic factors.
They should be of high scientific and technical standards, and aim to reflect a range of
views, expertise and wide geographical coverage”



IPCC Assessments

The IPCC’s policy influence grew as succeeding reports communicated a consistently
evolving understanding of climate change. At the same time, the return to the
same themes created a “standard narrative” that shapes the public dialog
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The IPCC devised transparent processes intended to promote trust. Its summarized only the peer-
reviewed literature. Review panels were chosen with attention to balance among countries, points of
view, and economic and institutional interests. Successive panels recruited a majority of new participants
to avoid an institutionalized IPCC point of view. Its most important innovation was to separate
assessment of science from discussion of policy. After the scientific assessment is complete, the IPCC
engages in a separate process to develop summaries for policy makers. Together, scientists and policy-
makers compose, line-by-line, the statements pertinent to policy, with explicit attention to the uniform

characterization of uncertainty.



Where Attention Goes, Energy Flows

IPCC @

INTERGOVERNMENTAL PANEL ON Climate change  wro uNEP

IPCC assessments energized the global public debate
about climate. Not a day passes without media
discussion of climate change. This is the most
important outcome, since public awareness of the
risks of climate change encourages governments to
pay attention and motivates public and private
initiatives. They have been unsuccessful in

promoting concrete actions by governments.

Kennel, C.F., Speaking Scientific Truth to Power, Cambridge Anthropology, 2013



The Standard Narrative

Narrow Focus: CO2 emissions, global temperature
Obscures as it clarifies: the realities and our options are much more nuanced

Moses receiving the tablets of the law, Jodo Zeferino da Costa, 1868



Carbon Dioxide (ppm)

CO2 is not the only driver of Climate Change

Why shouldn’t we work with them, too?
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Global Temperature

Designed to simplify, the concept obscures to clarify.

We use a vast modeling infrastructure to compute a number that only a physicist could love, one that
conveys a misleading impression that the world warms up uniformly. It is an imperfect index of the rate

humans are adding energy to the climate system, which will distribute it in complex ways.
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“That's here. That's home. That's us. On it everyone you love, every-
one you know, everyone you ever heard of, every human being who
ever was, lived out their lives. The aggregate of our joy and suffering,
thousands of confident religions, ideologies, and economic doctrines,
every hunter and forager, every hero and coward, every creator and
destroyer of civilization, every king and peasant, every young couple in
love, every mother and father, hopeful child, inventor and explorer,
every teacher of morals, every corrupt politician, every 'superstar,’
every 'supreme leader,’ every saint and sinner in the history of our
species lived there - on a mote of dust suspended in a sunbeam.”

- Carl Sagan, from a lecture delivered at Cornell University: 10/13/94




