Precision Instruments

for over 30 years

A look into the future of direct comparison ambient temperature salinometry

RBR Ltd, Ottawa, Canada info@rbr-global.com

Salinometer FAQ

With my AutoSal[™], can I:

1.	Use it on a small boat?	NO
2.	Transport it in my suitcase?	NO
3.	Characterize different seawaters over temperature?	NO
4.	Test the salinity of Guacamole?	NO
5.	Run it off of a car battery?	NO
6.	Set it up and use within 1 hour?	NO

RBR

Precision Instruments

for over 30 years

Outline

- Why Salinometry?
- Standard Methods of Salinometry
- Basic limitations
- The future of Salinometry
- Conclusion/Discussion

Why Salinometry?

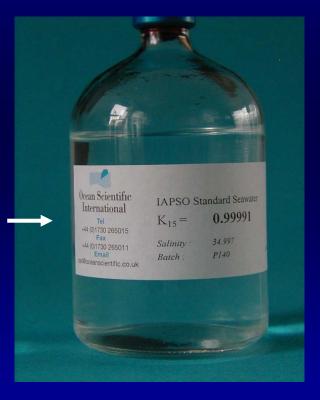
Salinity is a key property of seawater from which density and sound speed may be derived; these are fundamental to ocean science and climatology.

Salinometers provide a reference to the widely accepted Practical Salinity Scale.

Standard Method CTD & Water Samples → AutoSAL

Pra	ctical Salinity S	cale (1978)		
R = C(S,t,p)/C(35,15,0) $R_t = R/r_t R_p$	= C(S,t,p)/42.914	$S = \sum_{i=0}^{5} a_i R_i^{i/2} + \frac{1}{1}$	$\frac{t-15}{k(t-15)} \sum_{i=0}^{5} b_i R_i^{i/2}$	
$R_p = C(S,t,p)/C(S,t,0) =$	$1 + \frac{p(e_1 + e_2 p + e_3 p^2)}{1 + d_1 t + d_2 t^2 + (d_3 + d_4)}$	$\frac{1}{t)R} r_t = C(35, t, 0)/t$	$C(35,15,0) = \sum_{i=0}^{4} c_i t^i$	
$\begin{array}{ll} a_0 = 0.0080 & b_0 = 0.000 \\ a_1 = -0.1692 & b_1 = -0.00 \\ a_2 = 25.3851 & b_2 = -0.00 \\ a_3 = 14.0941 & b_3 = -0.03 \\ a_4 = -7.0261 & b_4 = 0.063 \\ a_5 = 2.7081 & b_5 = -0.03 \\ k = 0.016 \end{array}$	56 $c_1 = 2.00564e - 2$ 66 $c_2 = 1.104259e - 4$ 75 $c_3 = -6.9698e - 7$ 6 $c_4 = 1.0031e - 9$ 44	$d_1 = 3.426e - 2$ $d_2 = 4.464e - 4$ $d_3 = 4.215e - 1$ $d_4 = -3.107e - 3$	e ₁ = 2.070e - 5	

Standard Method - Standardization



Salinometer

referenced to

Standard Seawater

sequential samples

Limitations

- Temperature stabilized environment
- Sequential standardization
- Skilled staff
- SSW is expensive
- Warming samples may change apparent salinity

Precision Instruments

for over 30 years

The Future...now

- High Performance
- Easy to Use

KRF

- Operates at *in situ* temperatures
- Small size

Concepts of the Small Salinometer:

1. Direct comparison of conductivity of sample and standard

2. Direct reading of R_t over wide temperature range

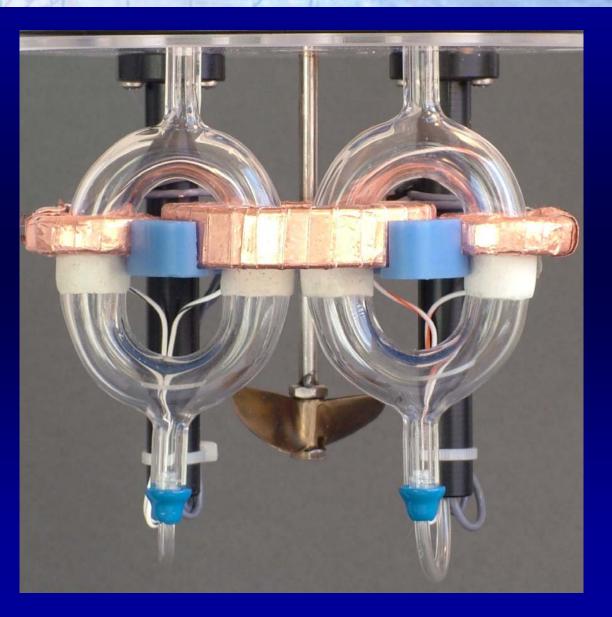
Precision Instruments

for over 30 years

Previous works

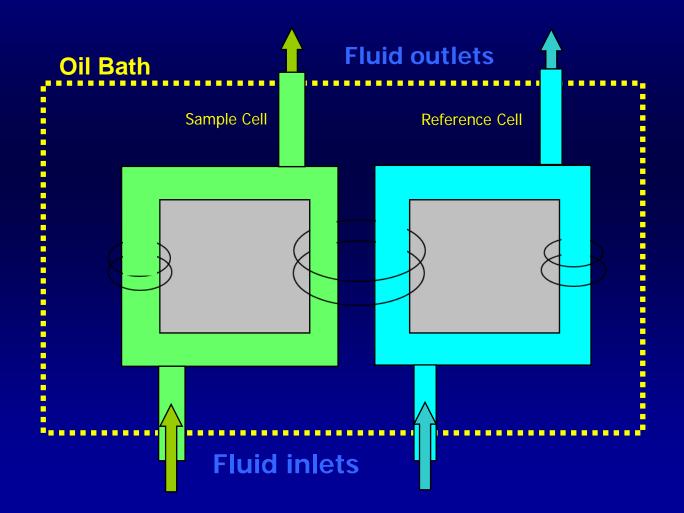
KRF

(a) China – Tienjin. in Collaboration with Tim Dauphinee, NSERC Canada Two conductive cells


Precision Instruments

for over 30 years

Dual chamber Inductive system


RBR

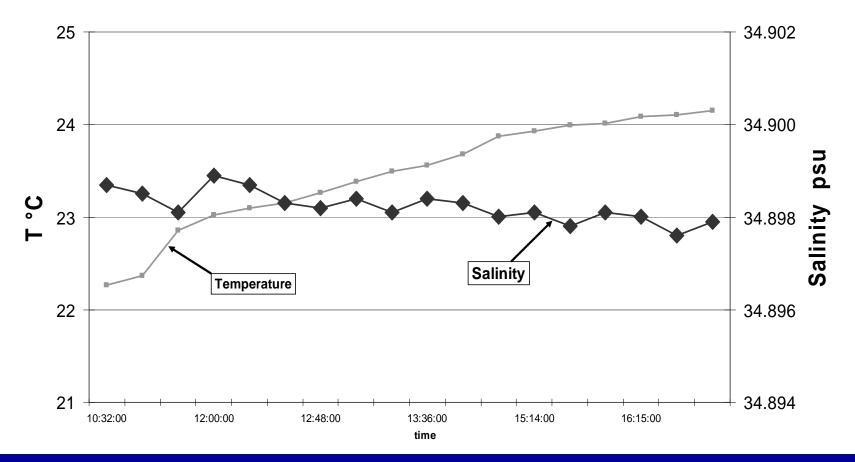
Based on standard RBR technology

Dual Chamber principle

Concepts of the Small Salinometer:

1. Direct comparison of conductivity of sample and standard

2. Direct reading of R_t over wide temperature range

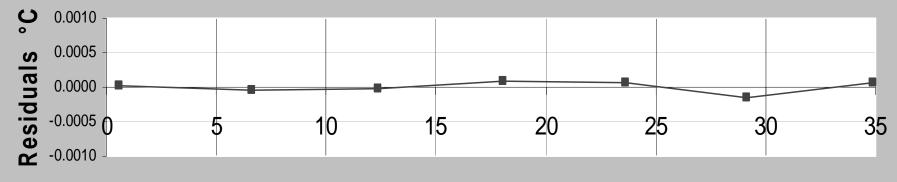

Salinometers measure R_t

$$S = a_0 + a_1 R_t^{\frac{1}{2}} + a_2 R_t + a_3 R_t^{\frac{3}{2}} + a_4 R_t^2 + a_5 R_t^{\frac{5}{2}} + \frac{T - 15}{1 + k(T - 15)} (b_0 + b_1 R_t^{\frac{1}{2}} + b_2 R_t + b_3 R_t^{\frac{3}{2}} + b_4 R_t^2 + b_5 R_t^{\frac{5}{2}})$$

Practical Salinity Scale - 1978

Test Results

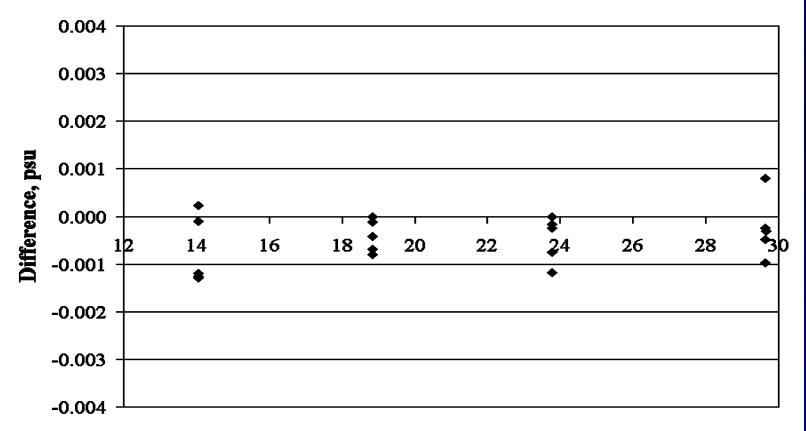
MS-310 Repeatability Using Samples of Constant Salinity



Test Results

Calibration of Temperature Sensor

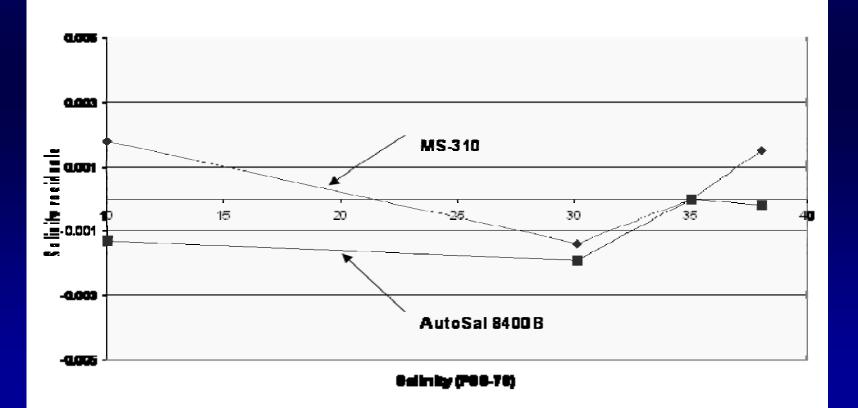
Residuals Versus Temperature



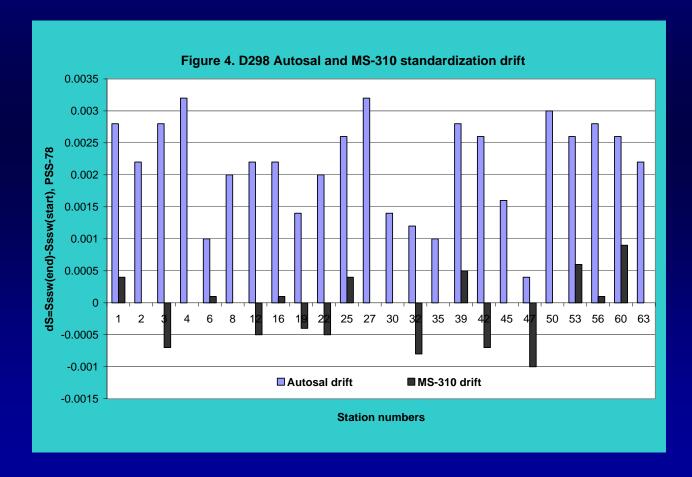
Temperature °C

Test Results

R_t variation with temperature for samples of Standard Seawater



Temperature, °C


Test Results

MS-310 and AutoSal 8400B against OSIL Linearity pack (1 trial)

RBR for over 30 years

Salinometer Drift Comparison

Performance data compared with PortaSal and AutoSal

	AutoSal 8400B	PortaSal 8410A	MicroSal MS-310	
Range	0.0001 to 1.15	0.0001 to 1.15	0.0001 to 2.00	Rt
Accuracy	0.002	0.003	0.002	psu
Resolution	0.0002	0.0003	0.0002	Psu
Room Temp	+0°; -2°	+0°; -2°	15° to 30°	С
Bath	16.8	9	2	Litres
Weight	70	29	5	kg
Power	400	200	10	watts
Supply Voltage	110/220 AC	110/220 AC	12 DC	volts

Easy to use

MS-310 User Interface

Windows[®]-based control panel streamlines And simplifies operation

RBR Micro-Salinometer Control Panel					
MS-310 012048					
Main Temperature: 22.3814 degrees C					
Ratio (Rt): 0.88206					
Sample salinity: 30.4106 (PSS-78)					
(30 second averages)					
Over the last 60 seconds, the averaged values of salinity had a mean of: 30.4103 and standard error of: 0.0002					
<< Default information					
Readings to be averaged over: 30 seconds (max 30)					
✓ Output to file: C:\rbr\sal\012048temp.sal					
Data are being saved in the file. Browse					
Close Calibrate>>					

Precision Instruments

for over 30 years

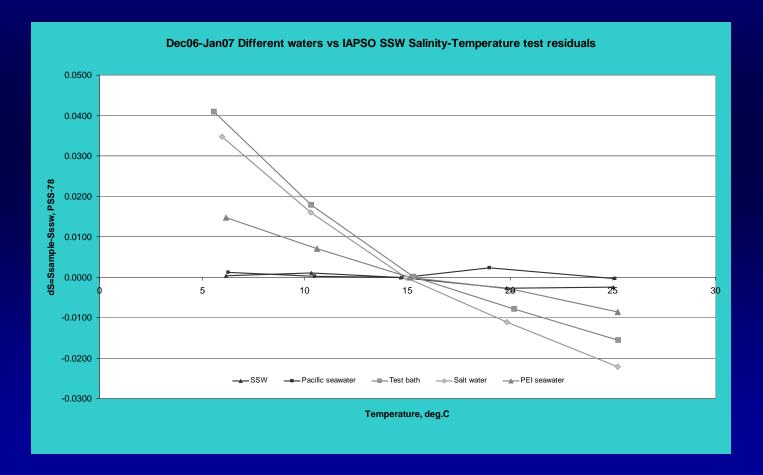
RBR

Precision Instruments

for over 30 years

Small Size

- 280mm x 280mm x 180mm
- 5kg
- 12VDC


What else can I do with the MS-310?

- Thermosalinograph
- Measure other fluids (guacamole?)
- Immerse in bath for direct calibration of CTDs
- Autosamplers
- Submersible ocean salinometer (ZEFICC)
- Investigate behaviour of seawater types

Characterization of various seawater types over temperature range

Conclusions

The MS-310 represents the future of scientific salinity measurement, allowing measurement of salinity samples directly after CTD retrieval, outside the lab; the nearest thing to *in situ* salinometry.

This offers a new perspective for understanding the nature of the conductivity measurements of seawater and opens doors beyond the PSS-78.

Water samples should not have to be adjusted to a salinometer's comfort conditions, rather the salinometer should adjust to the CTD measurement conditions – this is the future of salinity technology