Environmental Optical Sensors for AUVs and Other Compact Platforms

Michael Twardowski WET Labs, Inc., Narragansett, RI

mtwardo@wetlabs2.com

www.wetlabs.com

Collaborators

Casey Moore, Ron Zaneveld, Andrew Barnard, and Scott Freeman WET Labs, Inc.; Philomath, OR and Narragansett, RI

Oscar Schofield Rutgers University; New Brunwick, NJ

Jim Sullivan University of Rhode Island; Narragansett, RI

Optical Sensors on Compact Platforms: Science Applications

Science driver: Distribution and dynamics of biogeochemical properties in the ocean over unprecedented space and time scales

Optical Sensors on Compact Platforms: Navy Applications

Navy MIREM Training Exercise

Applied Problem: What can the towed system see in the optically complex coastal ocean?

"Environmental Optical Data"

DISTANCE THROUGH WATER

0°

<u>attenuation</u> (c) - the rate of light loss through water from the processes of scattering (b) and absorption (a)

$$C = a + b$$

$$b_{b}$$

$$distribution of scattered light$$

$$incident \\ ray of light$$

$$Volume scattering \\ function$$

Scattering and Particle Composition

Table	1. Some	biogeoch	nemical	properties	derived	from o	ptical	properties.

Biogeochemical property	Optical Property	Example Reference(s)			
Particulate Organic Carbon (POC)	1) c_p or b_p	Peterson 1978; Gardner et al. 1993, 2001; Loisel and Morel 1998; Bishop 1999; Bishop et al. 2002; Claustre et al. 1999, 2000; Mishonov et al. 2003			
	2) b_{bp}	Stramski et al. 1999; Balch et al. 1999			
Total Suspended Matter (TSM)	1) c_p or b_p	Peterson 1978; Gardner et al. 1993, 2001; Walsh et al. 1995; Prahl et al. 1997			
	2) turbidity	Fugate and Friedrichs 2002			
Dissolved Organic Matter or Carbon	1) <i>a</i> _g	Pages and Gadel 1990; Vodacek et al. 1997			
(DOM, DOC)	2) Fluorescence	Coble et al. 1993; Ferrari et al. 1996; Klinkhammer et al. 2000			
DOM composition ^a	1) a_g , spectral shape	Carder et al. 1989; Blough and Green 1995			
	2) Fluorescence, multi-spectral shapes	Coble 1996; Del Castillo et al., 1999; McKnight et al. 2001			
Chlorophyll	1) <i>a</i> _p	Bricaud et al. 1998; Claustre et al. 2000			
	2) Fluorescence	e.g., Yentsch and Menzel 1963; Claustre et al. 1999			
Phycobiliproteins	Fluorescence	Cowles et al. 1993; Sosik et al. 2002			
Phytoplankon pigment ratios	a_p , spectral shape	Trees et al. 2000; Eisner et al. 2003			
Proteins	Fluorescence	Coble et al. 1993; Mayer et al. 1999			
Hydrocarbons	Fluorescence	e.g., Holdway et al. 2000			
Particle size	1) c_p , spectral shape	Morel 1973; Boss et al. 2001			
distribution	 β(θ) 	Brown and Gordon 1974; Zaneveld et al. 1974; Agrawal and Pottsmith 2000			
Particulate refractive index	1) β(θ)	Brown and Gordon 1974; Zaneveld et al. 1974			
	2) $c_p(\lambda)$, b_{bp} , and b_p	Twardowski et al. 2001			
Sewage	Fluorescence	Petrenko et al. 1997			
Nitrate	UV absorption	Johnson and Coletti 2002			

^aFor example – ratio of dissolved humic acid to fulvic acid, DOM molecular size distribution, DOM aromaticity, DOM source

For more details:

Twardowski, M.S., M. Lewis, A. Barnard, J.R.V. Zaneveld. 2005. In-water instrumentation and platforms for ocean color remote sensing applications. In: *Remote Sensing of Coastal Aquatic Waters*, R. Miller, C. Del Castillo, and B. McKee [Eds.], Springer Publishing, Dordrecht, Netherlands, pp. 69-100.

Visibility and Attenuation

- proportionality (~4.8) determined by contrast threshold of human eye
- accuracy better than 10%
- backscattering is NOT a good visibility proxy

COTS beam attenuation meter

WET Labs c-star

Problems: size, hydrodynamics, power, maintenance...

Attenuation and scattering sensors installed on a glider AUV

Slocum glider with "eyes"

Rutgers glider team

"SAM": Attenuation Sensor

SAM: How it Works

PROBLEM: To measure attenuation accurately in the ocean, long pathlengths are required.

How do you do that with a compact sensor?

- SAM = "Scattering and Attenuation Meter"
- <u>Principle</u>: 2 measurements of scattering are made at the same angle, but over different pathlengths

$$c = P_c \left[\ln \left(\frac{I_{D1}}{I_{D2}} \right) (l_2 - l_1)^{-1} \right] + O$$

Comparison with conventional attenuation measurements

Long Island Sound 2004

59,290 data points, no binning

Visibility and Attenuation in San Diego Harbor

REMUS Bottom Imaging in San Diego Harbor

MCM EOID performance prediction

EODES-3 Tactical Decision Aid

 Model optimized for AN/AQS-24 laser line scan systems
 Model input is SAM attenuation data

METRON, Inc. www.metsci.com

Particle Composition with Gliders

Hudson River plume

http://marine.rutgers.edu/cool/

Vertical migrations: TAPS

Jumars ONR Report 2005

OASIS 2005: glider SAM attenuation

nocturnal turbidity events: what are we really looking at? Are the optics really resolving mysid shrimp ~1 cm long?

no way...

Are we seeing an influx of smaller (optically significant) particles as a "migration residual"?
But how does the entire water column clear so fast?
Aren't mysids attracted to light?

"AUV-B": Total Scattering Sensor

AUV-B: Theory and Modeling

- Teflon diffuser
- Acceptance angle (γ_a) critical
 - When bd = 1 mm and sd = 10 cm, then γ_a is ~0.7°, comparable to that of the WET Labs ac9 meter

AUV-B Prototype: Design

AUV-B Prototype Testing

AUV-B

Long Island Sound: May, 2005

Comparison with b from ac9

OASIS 2007: autonomous profiler

<u>SENSORS</u>

- WL AUV-B
- WL ACS
- WL ECO-FLNTU
- SBE49 CTD
- NORTEK ADV

Profiler AUV-B scattering

"BAM3": 3λ Beam Attenuation Meter

Currently in design and feasibility demonstration phase...

3λ source concept

What have we been doing the last 2 weeks off the pier?

<u>RaDyO</u>: Radiance in a Dynamic Ocean

Primary instrument package

Designed to investigate aspects of the particle population (size distribution, composition, etc.) and bubbles with optical scattering

Bubble VSFs (monodisperse)

bubbles

beta (60 deg) / beta (120 deg)

Time (relative)

Ebbing tide with surfzone gradually approaching sampling site... Thank You