Underway CTD Jochen Klinke The Oceanscience Group

Freshwater Products

Riverboat

Freshwater Products

• RF modem (RS232)

• Mini PC (Wifi)

Saltwater Products

• Sea Spider

Custom Projects

• Vertical Profiler (USC)

• Energy Harvester (Teledyne)

CTD Measurements At Sea

UCTD Design Goals

Data Quality

Easy-touse

Low Cost

UCTD

Portable

UCTD Design Goals

Data Quality

Easy-touse

Low Cost

UCTD

Portable

UCTD Principle

After launching the CTD probe, line is spooled from both the winch and the probe tail while the ship moves away from the drop site

UCTD Principle

The probe descends vertically with nearly constant drop rate

UCTD Principle

UCTD SIO Prototype

UCTD SIO Prototype

UCTD SIO Prototype

UCTD Probe Assembly

- Custom Sea-Bird CTD
- Bluetooth Interface
- 16 Hz sampling
- Twist-and-lock connection

UCTD Winch

- Large capacity reel
- Motorized levelwind
- Two-speed DC drive
- High-strength Spectra line

UCTD Rewinder

- Microprocessorcontrolled for precise levelwind
- Fully automated for fast rewinding

UCTD Davit

- Compact mount with probe holder
- Deck or rail mount attachment options
- Telescopic boom
- Custom block

UCTD Step 1...

UCTD Step 2...

UCTD Step 3

Retrieve

UCTD Live...click to play

UCTD Depth vs. Time

UCTD Depth Performance

UCTD Sensor Specifications

	C [S/m]	T [°C]	D [dbar]	S [psu]
Resolution	0.0005	0.002	0.5	0.005
Raw Data Accuracy	0.03	0.01 to 0.02	4	0.3
Processed Data Accuracy	0.002 to 0.005	0.004	1	0.02 to 0.05
Range	0 to 9	-5 to 43	0 to 2000	0 to 42

UCTD XBT Comparison

UCTD CTD Comparison

UCTD CTD Comparison II

UCTD CTD Comparison III

UCTD Salinity De-Spiking

UCTD Sound Speed Transect

UCTD Benefits

- Continuous profiling without altering ship speed
- Deployments are easy to perform
- Probe fully decoupled from ship
- Direct depth measurement via pressure sensor
- Optional post-deployment sensor calibration
- Cost-effective
- Ultra-compact and portable
- High quality data
- No pollution with waste materials

UCTD Information

- Rudnick & Klinke (JAOT 2007)
- WHOI Technical Note (2007)
- http://www.oceanscience.com
- http://www.icess.ucsb.edu/iog/uCTD
- Field demonstration (June 2, 2008)

