Introduction: This document will guide you through the installation process for a stand-alone
installation of the SEGGER J-LINK GDB Server/Debugger, Eclipse IDE, and GNU/GCC Codesourcery
compiler for the EFM32 MCU families. A CD with all of the items needed for installation is needed
is included. Step-by-Step instruction provide the user with a guided installation of these tools.

NOTE: This installation guide makes use of the following versions of the various tools and
software. Other versions may work together though it is recommended to use the versions
included with the CD to ensure that everything works together initially before experimenting
with different versions.

For this Install Guide Use the following:

Tool Name Version

Eclipse ID for C/C++ Developers Version: 3.7.2 Build id: 20120216-1857(Indigo)
Sourcery CodeBench Lite Edition for ARM GNU/Linux Sourcery CodeBench Lite 2012.03-57

Segger J-Link GDB Server V4.54a

1) Install Simplicity Studio: This can be more easily done if you have an internet connection but | have provided an option

for doing this offline as shown below.

1. Install Simplicity Studio by clicking on ‘Simplicity_Studio_Setup.exe’. This is found on the install disk.

2. If you do not have an internet connection then jump to 3. If you have internet connectivity then simply click on the
‘Add/Remove’ folder and once open click the ‘Install All’ button. This will take some time depending on your internet
speed. This will ensure that everything is completely installed including Appnotes, Firmware Examples, etc.

Downloads

b/ &

packages Install Al Inst Ok

{nl]

3. If you do not have an internet connection then follow what is copied below from our Lizard Lounge Forum.

Note: The all_ss_packages.zip is on the install disk.

2)

Normally Simplicity Studio connects to Energy Micro's web servers to check if there is new

packages/material available to download. In some cases it can be useful fo be able to update a

Simplicity Studio installation without Simplicity Studio connecting to the internet itself. By following the steps below you will be able to
download the latest packages for Simplicity Studio to a local storage and have Simplicity Studio check for updates from this location.

1. Install Simplicity Studio (Can be downloaded from here).
2. Download zip file of latest Simplicity Studio packages from here (all_ss_packages.zip). This file is updated as new packages
are released for Simplicity Studio. Note that this zip-file is rather large.
Extract all_ss_packages.zip. (e.g. to d:\packages)
Open Simplicity Studio
Go to File->Network Settings....
Check Use Alternate Download location check box and fill in the path to the folder you extracted your all_ss_packages.zip
into (e.g. file:///d:/packages). Note the "file:///" prefix in front of the path and make sure to use forward slash (/)
Press Yes to install any recommended packages if you are prompted
8. Go to Add/Remove and install any packages you want.
9. Go to Updates to check if there are any new versions of packages you already have installed.
10. Smile and enjoy an up-to-date Simplicity Studio installation

o o kW

=~

Simplicity Studio installs itself into the following locations for PC systems.
WIN7: C:\Users\'YOUR USER NAME’\AppData\Roaming\energymicro
WIN XP: C:\Documents and Settings\'YOUR USER NAME'\Application Data\energymicro

From here on out the directory preceding the energymicro folder will be referred to as %’APPDATA%. So the directories
above would look like what is shown below.

C:\%APPDATA%\energymicro

Install Segger J-LINK GDB Server: You will find ‘Setup_JLinkARM_V454a.exe’ in the Setup_JLinkARM_454a folder.
Double click on the executable to install the GDB Server.

After installing the J-LINK GDB Server we can now connect the STK or DK to our PC. We will verify the GDB Server is

functioning.

1. Connect the STK/DK to your PC

2. From the PC ‘Start Menu’ browse to the SEGGER folder in ‘Programs’ and find the J-LINK ARM V4.54a and open the
program called J-LINK GDB Server via SWD.

3)

After opening this if everything installed correctly you should see a GUI that looks similar to this...

ﬂ SEGGER J-Link GDE Server V4.54a | = ! | X |
File Help
[v Localhost anly
GDE |Waiting for connection I Initial 540 zpeed |5 kHz | ¥ Stayontop
] [v Show log window
J-Link, |Eu:unneu:ted I Current 5'WwD speed |5 kHz ™ Generate lngfils
- : - [Cache reads
CPU |Cortex-M3, Core ld: 0x2BAM477 [[231V [Litle encian x| = 2 e

[w Init regs an ztart
Log output: Clear log

JLinkARM d11 V4 . 54a (DLL compiled Sep 17 2012 15:58:45)

Waiting for J-Linlk connection. ..

J-Link i= connected.

Firmware: Energy Micro EFM32 compiled Jul 13 2012 15:38:33
Hardware: V7 .00

I |15-H: 440007327

Featurei=): GDEB

Checlking target voltage. ..

Li=tening on TCEP<IP port 2331

m

Connecting to target. . Connected to target
Waiting for GDB connection. . . il
4 F

0 Bytes downloaded 1 JTAG device

LEAVE THIS PROGRAM RUNNING!!

Install Sourcery CodeBench Lite(GCC/GNU Compiler): Double click the ‘arm-2012.03-56-arm-none-eabi.exe’ found on
the install disk.

When prompted whether to add CODEBENCH to the PATH environment variable, you should accept!!

This is a FREE GNU/GCC compiler from Mentor Graphics. You can also download this from Mentor’s site at the link
below...
http://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/editions/lite-edition/

The LITE version is Command Line only!! The Personal Edition shown below along with other fully supported Sourcery
Codebench versions contain a much more integrated Eclipse IDE with project management and customization. The LITE
version is FREE but provides no support.

For a fully supported version you can upgrade the LITE version to a version that you can get support for. Typical pricing
for the Personal Edition is shown below.

http://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/editions/lite-edition/

Sourcery CodeBench for ARM EABI
« Easy-to-use Eclipse-based IDE
« Debugging and analysis tools

« Optimized, small-footprint libraries Buy Now and Save!
« JTAG probe support

Original Price: $399
Your Price: $299

4) Install Java: Eclipse is a Java application and for it to work your PC must have Java Runtime Environment(JRE) installed.

To verify if your PC already has Jave installed you can open a DOS Prompt and type the following command:
java —version

If you don’t see a version show up then you will need to install Java on your machine. Depending on whether your
machine is a 32bit or 64bit PC you will install either the jre-7u9-windows-i586 x32.exe or the jre-7u9-windows-x64.exe
respectively. These are both found on the Install Disk.

5) Install Eclipse Indigo IDE: Depending on whether you are using a 32bit or 64bit machine you will unpack either the eclipe-
cpp-indigo-SR2-incubation-win32.zip or the eclipe-cpp-indigo-SR2-incubation-win32-x86_64.zip respectively. Unzip the

ENTIRE Zip file onto C:\. You now have a full Eclipse intstallation at C:\eclipse.

You can also download Indigo directly from the following link.
http://www.eclipse.org/downloads/packages/eclipse-ide-cc-developers-includes-incubating-components/indigosr2

@+ Eclipse IDE for C/C++ Developers (includes Incubating

components)

Package Details Download Links
Windows 32-bit

An IDE for C/C++ developers with Mylyn integration. Note that this package includes Windows 64_bit

some incubating components, as indicated by features with "(Incubation)” following their Mac OS X(Cocoa 32)

name. Mac OS X(Cocoa 64)
Linux 32-bit

Feature List Linux 64-bit

org.eclipse.cdt Downloaded 672,155 Times

6) Install Plug-Ins: Now Start Eclipse by double-clicking the eclipse.exe found in C:\eclipse\eclipse.exe. You may want to
right click on the executable and create a Shortcut or if using WIN7 choose ‘Pin to Start Menu’ .

1. When prompted for a workspace you will navigate to one of the following directories depending on which STK you
have.
GIANT GECKO/STK3700: C:\%APPDATA%\energymicro\kits\EFM32GG_STK3700\examples
LEOPARD GECKO/STK3600: C:\%APPDATA%\energymicro\kits\EFM32LG_STK3600\examples
TINY GECKO/STK3300: C:\%APPDATA%\energymicro\kits\EFM32TG_STK3300\examples

http://www.eclipse.org/downloads/packages/eclipse-ide-cc-developers-includes-incubating-components/indigosr2

Other Kits such as the original Gecko series or possibly Development Kits will follow the same directory structure.

2. You will now see the Eclipse’s welcome screen.
3. Select Install New Software... from the Help pulldown menu and enter

http://download.eclipse.org/releases/indigo

in the Work with: field as shown below. You might need to wait a while for the plugins to show up. Browse to
Mobile and Device Development and select C/C++ GDB Hardware Debugging. Press the Next > button and follow the

instructions.

e -

: Available Software

I| Checkthe items that you wish to install.

o

Work with: Indigo - http://download.eclipse.org/releases/indigo

-

Add...

Find more software by working with the "Available Software Sites” preferences.

| »

m

type filter text
Mame Version
[[000 Application Development Frameworks
&> []000 Business Intelligence, Reporting and Charting
i []000 Collaboration
i [7]000 Database Development
> []000 EclipseRT Target Platform Cemponents
i []000 General Purpose Tools
> []000 Linux Teols
| & [H 000 Mobile and Device Development
[] 4 C/C++ GCC Cross Compiler Support 1.0.2.201202111925
Lpe C/C++ GDB Hardware Debugging 7.0.0.201202111925
[C] & C/C++ Memory View Enhancements 2.1.200.201202111925
[C] & C/C++ Remote Launch 6.0.0.201202111925
[} @ eRCP Designer 1.0.0.r37:201106081556
[] b+ Mobile Tools for Java 1.1.2.201110240906

1 Ll Mahile Tanle far laua Framnlee

| SelectAll | | Deselect All 1 item selected

11 2 2011 1N24Na0A

Details

Tools used to develop mobile and device applications.

Show only the latest versions of available software

Group items by category

[Show enly software applicable to target environment

Contact all update sites during install to find required software

[T Hide items that are already installed

What is already installed?

More...

@

When asked to restart Eclipse, please do so.

< Back

Mext >

Finich

Cancel

http://download.eclipse.org/releases/indigo

4. Install Eclipse Embedded Systems Register View plugin: Proceed as was done in step 6.3 above but use
http://embsysregview.sourceforge.net/update as the location.

§e|ect Embedded Systems Register View(SFR) and then Next>.

~ Install
Available Software
Check the items that you wish to install. \JD:

Work with:ﬂ3 update site: http://embsysregview.sourceforge.net/update -

Find more software by working with the "Available Software Sites” preferences.

type filter text

Mame Version

a [J] 000 embsysregview

L Embedded Systems Register View (SFR) 022

| SelectAll || DeselectAl 1item selected

Details
Show only the latest versions of available software [7] Hide iterns that are already installed
[¥] Group items by category What is already installed?

[] Show only software applicable to target environment
Contact all update sites during install to find required software

@ < Back Next > Finish

When asked to restart Eclipse, please do so.

7) Now we can continue on past the Welcome screen. Click the 3D Arrow to the right of the welcome screen to enter the
Workbench view.

You will see the following now...

http://embsysregview.sourceforge.net/update

C/C++ - Edipse Platform

IETNE P NG

Tiw

8) Create a Project: The new project will be based on the ‘blink” example provided for the particular STK/DK that you have

in your possession. Again you need to make sure you have chosen the Workspace directory to be that of the STK/DK that
you have.

Create the project by selecting File->New->C Project. Use blink as the project name.
For Project type: select Makefile project
For Toolchains: select - - Other Toolchain - -

You window should look like the following...

9)

-

= C Project | (=l 22 |

C Project —>

I Directory with specified name already exists.

Project name: blink

Use default location

ChUsers\Frank Roberts\ AppData'\Roarminghenergymicrokits Browse...
default
Project type: Toolchains:
= Executable -- Other Toolchain --
[= Shared Library Cross GCC
[=- Static Library GMU Autotools Teolchain
(= Makefile project Microsoft Visual C++

& Empty Project
= GMNU Autotools

Show project types and toolchains only if they are supported on the platform

@:‘ < Back Mext =] [Finish] [Cancel

Click Finish

Add Project Properties: Select Project->Properties from the Project dropdown menu.

In the Project Properties window make the following modifications which are also shown in the updated window below.

e

C/C++ Build: UNCHECK the checkbox for ‘Use default build command’ and type in cs-make.

C/C++ Build: Modify build directory to S{workspace_loc:/blink/codesourcery}.

C/C++ Build->Discovery Options: Uncheck thet Automatic discovery of paths and symbols checkbox.
C/C++Build->Settings: Check the GNU EIf Parser checkbox.

EProperﬁes for blin

i type filter text

C/C++ Build

I Resource
Builders
4| C/C++ Build|
Build Vaniables
Discovery Options
Environment
Logging
Settings
Tool Chain Editor
b C/C++ General
Project References
Run/Debug Settings
|+ Task Repository
WikiText

Configuration: lDefauit [Active |

T] l Manage Configurations...

= Builder Settings | &) Behaviour | i Refresh Policy

Builder
Builder type: External builder
[7] Use default build command

Build command: cs-make

Makefile generation

Build location

Build directory: ${workspace_loc/blink/codesourcery}

Generate Makefiles automatically Expand Env. Variable Refs in Makefiles

Workspace...] [File system...] [Valiabhs...]

’ Restore Defaults l l Apply l

@

Click the OK button to save project properties.

| ook || caned |

10) Modifying the Makefile: Find the Makefile.blink file in the blink\codesourcery directory for your particular STK/DK. Copy
and rename this file to Makefile without a file type suffix. We will want to inspect this Makefile and understand how it is
setup and ensure it is setup correctly for our project. You will know that you have renamed the Makefile.blink to simply
Makefile because in Eclipse you will now see a Green Bullseye next to the Makefile file as shown below.

L1 —]

4 == blink
5 i:;" Binaries
» =% arm
> = bin
4 [= codesourcery
» [= build
v [Exe
2 2= Ist
| @ Makefile
s = iar
» = rowley
. [€] blink.c
readme.bet

Double click Makefile in Project Explorer pane to open inside of Eclipse.

Ensure Correct Path is set for your Codesourcery Compiler Install Directory!!
P R A R R A e A e
Definitions of toolchain.
You might need to do changes to match your system setup
B

Change path to CodeSourcery tools according to your system configuration
WINDOWSCS ?= CodeSourcery\Sourcery CodeBench_Lite_for_ ARM _EABI #This may change if you did not
install CodeSourcery to its Default location!!

Ensure correct EFM32 and Project name are selected!!

P R A R R A e A e
Definitions
B

DEVICE = EFM32GG990F1024
PROJECTNAME = blink

Check CFLAGS macro contains —00. This selects the Compiler optimization. Use —00 is best for debugging
debug: CFLAGS +=-DDEBUG -00 -g3

Inspect the Makefile further and you will find the Include paths listed for the header files as shown below along with the
C Source files that are being compiled in the project. Keep in mind the Makefile has to be used since the LITE version of
Codesourcery only provides command line interface.

INCLUDEPATHS += \

-I.. 0\

-I../../../../../CMSIS/Include \
-I../../../../../Device/EnergyMicro/EFM32GG/Include \
-I../../../../../emlib/inc \

-I../../../../common/bsp \

-I../../../config

T
Files
HHHEHHHH

P

@]
+
1}

\
./../../Device/EnergyMicro/EFM32GG/Source/system_efm32gg.c \
../common/bsp/bsp_stk.c \
../common/bsp/bsp_stk_leds.c \
../common/bsp/bsp_trace.c \
../emlib/src/em_assert.c \
../emlib/src/em_cmu.c \
./emlib/src/em_ebi.c \
../emlib/src/em_emu.c \
../emlib/src/em_gpio.c \
../emlib/src/em_system.c \
../emlib/src/em_usart.c \

NN N NN NN NN
NN N N NN NN NN

N N N NN SN SN NSNSNSNNNWO!’
NN NN NN

ink.c

(e
— .
[

s_SRC += \
oo/oo/./../../Device/EnergyMicro/EFM32GG/Source/G++/startup_efm32gg.s

11) Compile the project: We are now ready to compile the project. Before we do so make sure we have the Console Tab
showing in the bottom of Eclipse so we can see the Codesourcery Compiler output.

L

e Prahlemshﬂ Conzole &3

HL
CDOT Build Console [blink]

] Properties

There are multiple ways to Build the project. Some are listed below...
1. From the main menu bar Project->Build Project

Project | Window Help

Open Project

Close Project

aip Build All Ctrl+B
Build Configurations 3
Build Project
Build Wirking Set 3
Clean...

v | Build Automatically
Make Target r

Properties

2. From the Project Explorer pane, right click on the top level ‘blink’ project and select Build Project.
Use Ctrl-B from the keyboard.

4. You will now see a Progress Window appear after you select Build Project and information scrolling down in the
Console Window. After Codesourcery has compiled the blink project you will see the following output in Console.

E’_ Problems | ¥ Tasks | &l Consle 11 . E Properties @ ‘@ | " Bl il =0
CDT Build Console [blink]

I -LoJadfe) JOvsTS Include CT. 7
-I../../../eonfig -c -0 build/em_usart.o .
"Building file: ../blink.c"

"C:\Program Files (x86)/CodeSourcery/Sourcery CodeBench_Lite for ARM_EABI/bin/arm-none-eabi-gcc” -DEFM32GG99@F1024 -Wall -Wextra -mcpu=cortex-m3
-mthumb -ffunction-sections -fdata-sections -mfix-cortex-m3-ldrd -fomit-frame-pointer -DDEBUG_EFM -MMD -MP -MF build/blink.d -DDEBUG -08 -g3

Lo -LJudodd o) /OIS Include -1../. /00 oo/ /Device/EnergyMicro/EFM3266/ Include -I../../../../. . Jenlib/ine -I../../../../common/bsp
-I../../ . Jeonfig -c -0 build/blink.o ../blink.c

"Assembling ../../../../../Device/EnergyMicro/EFM326G/ Source/GH/startup_efm32gg.s”

"C:\Program Files (x86)/CodeSourcery/Sourcery CodeBench_Lite for_ARM EABI/bin/arm-none-eabi-gcc” -x assembler-with-cpp -mepu=cortex-m3 -mthumb
-Le -Loauded /eSS Include -I.. /L L LG L/ Device /EnergyMicro/EFM32GG/ Include -1, /L uu uu L Jemldb/ine SIL /L L fcommon/bsp
-I../../../config -c -0 build/startup efm32gg.o ../../../../../Device/EnergyMicro/EFM32GG/ Source/GH/startup_efm32gg. s

"Linking target: exe/blink.out”

"C:\Program Files (x86)/CodeSourcery/Sourcery CodeBench Lite for ARM EABI/bin/arm-none-eabi-gec” -Xlinker -Map=lst/blink.map -mcpu=cortex-m3
-mthumb -T../../../../../Device/EnergyMicro/EFM326G/ Source/GH/efm32gg. 1d -Wl,--gc-sections build/system_efm32gg.o build/bsp stk.o
build/bsp_stk_leds.o build/bsp_trace.o build/em_assert.o build/em_cmu.o build/em ebi.o build/em emu.o build/em_gpio.o build/em_system.o
build/em_usart.o build/blink.o build/startup_efm32gg.o -Wl,--start-group -lgcc -1c -lcs3 -les3unhosted -W1,--end-group -o exe/blink.out
"Creating binary file"

"C:\Program Files (x86)/CodeSourcery/Sourcery CodeBench_Lite_for ARM EABI/bin/arm-none-eabi-objcopy” -0 binary exe/blink.out exe/blink.bin E

w

.KDevice/EnergyMicru]EFM32GﬁfInc1ude “L..fof o). Jenlib/inc —I“?../../../commun/hsp S
./ ../emlib/src/em_usart.c

dod.
dod.

#% Build Finished ****

It has successfully built the project with no errors.

5. Remove Eclipse Discrepancies: Even though the project compiled you will notice that if you inspect blink.c you will
see that it shows ? marks and what appear to be little red bugs next to indicating that things like uint32_t could not
be resolved. This is because Eclipse is rather separated from Codesourcery and does not know where the various
Header files are located. Codesourcery knows this because of the Makefile but these details are not inherited by
Eclipse via Codesourcery LITE. So we need to tell Eclipse where these files are.

Eclipse doesn’t know where the header files are and shows ? marks and red bugs to indicate this...
33 7

34 kEEEEddkdkdckdok kiR Rk ko ok ok ok koo ek ko ok ok sk ok ok ok ok k)

2155 #include <stdint.h>
[2[36 #include <stdbool.h>
1237 #include "em device.h”
238 #include "em chip.h”
1239 #include “em cmu.h’
[2142 #incl " f
[2le1 8 " "
IEH-ZMW'] " : "
43

ﬁ*‘l—ﬂf\mlatile msTicks; /* counts 1ms timeTicks */
45

#r46 void Delay(uint32 % dlyTicks);
47

AR JEEEEEEEkERE Rk kR kR kR R R R Rk Rk Rk Rk AR R kR Rk Rk kR kR kR Rk R

Goto Project->Properties and then into C/C++ General->Paths and Symbols. Now click the Includes Tab and enter
the following information below by clicking the Add... button and then File system... button. You should also check
the Add to all configurations and Add to all languages boxes. Now populate the directories as shown below.

T

K3 Add directory path ™R . -3

Directory:

[¥] Add to all cenfigurations
[¥] Add to all languages
[= Is a workspace path

4

Enter Include Directory paths as shown below. Keep in mind the C:\Users\Frank Roberts\Appdata\Roaming will differ
according to your username, EFM32 STK/DK you are using and whether or not you are on a XP or WIN7 system as
described earlier in this document.

| Paths and Symbols Doy
Resource I
Builders |
C/C++ Build Cenfiguration: ’Defauh [Active] '] lManage Configuratiom...]
C/C++ General
Code Analysis
Code Style (= Includes | [h] Include Files | # Symbols | =1 Liblaliﬁl (B Library Paths | (% Source Location | (= Qutput Location | E| References | Tg Data Hierarch‘_l,r|
Documentation
File Types |Languages | | Include directories Add...
Indexer _ Assembly (= C:\Users\Frank Roberts\AppData\Roaming\energymicro\emlib\inc Edit
Language Mappings GNU C (= C:\Program Files (x86)\CodeSourcery\Sourcery_CodeBench_Lite_for ARM_EABNarm-none-eabilinclude
lPaths and Symbols GNU C++ @C:\Users\Frank Roberts\AppData\Roaming\energymicro\kits\commaon\bsp
:L?;SEEZZE;ZE:;; (= c:\Users\Frank Roberls\.ﬁppData\Roaming\energ]rm?cro\CMS.IS\Include .
Tack Repository (= c:\Users\Frank Roberts\AppData\Roaming\energymicro\Device\EnergyMicro\EFM32GG\Include
WikiText @C:\Program Files (x86)\CodeSourcery\Sourcery_CodeBench_Lite_for ARM_EABI\lib\gcc\arm-none-eabild.6.Mincl...
Move Up
Move Down

Show built-in values

[& Import Seﬂings...] l Ef: Export Settings...

lﬁstale Defauhs] l Apply l

© [ok || conce |

After you have entered all the paths click Apply or OK. It will ask you if you want to rebuild, do so. You may need to still
manually rebuild as we have before. If all of the paths have been entered correctly all of the ? marks and bugs will
disappear. Eclipse can now reference these files and definitions. Keep in mind this has NOTHING to do with the
Compilation/Makefile that Codesourcery makes use of.

Blink.c after entering directories for Paths and Symbols...
EE

S R R R
35 #include <stdint.h>

36 #include <stdbocl.h:

37 #include “em_device.h™

38 #include "em_chip.h”

30 #include “em_cmu.h™

42 #include “em_emu.h”

41 #include "bsp.h"

42 ginclude "bsp trace.h”

3

volatile wint32 t msTicks; /* counts Ims timeTicks */

a5
46 vold Delay(uint32 t dlyTicks);
47

12) Download and Debug Application Code
To download and debug we need to create a Debug Application.
1. Create a debug launch configuration: Go to top menu bar and select Debug Configurations...

$-0-Q-|®C
; (no launch historyy i

Debug As >

Debug Configurations...

. Organize Favorites... .

2. Highlight and Right-Click GDB Hardware Debugging and Select New
[c] C/C++ Postrmoertern Debugger

[t] C/C++ Remote Application
[c | GDB Hardware Debugging

=mote Application

¥ OM
Dj&cate

Delete

3. You should now see this Main Menu window
Click on Select Other... as highlighted below

@ Debug Configurations

Create, manage, and run configurations

iEX|E 33 Mame: blink Defautt

[E] C/C++ Application

C/C++ Application:
[€] C/C++ Attach to Application PP

Build configuration:

Enable auto build

@ Use workspace settings

©

Now Check the Use configuration specific settings as shown and choose Standard GDB Hardware Debugging Launcher

and click OK.

= Select Preferred Launcher =1 G J b

This dialog allows you to specify which launcher to use when multiple
launchers are available for a configuration and launch mode.

Use configuration specific settings Change Workspace Settings..,

Launchers:

GDE (D5F) Hardware Debugging Launcher
Standard GDE Hardware Debugging Launcher

Description

Jtag hardware debugging using the standard debugger Framework (CDI).

@ [ok][canca

type filter text | 5 Main - %F Dehugge; > Stam.q; "EF- Source =] Common

[E] C/C++ Postmortem Debugger codesourcenyexe’ blink.out
[€] C/C++ Remote Application Project:
[€] GDB Hardware Debugging -
[T] blink Default blink
B Launch Group Build (if required) before launching

T

E-_Sear:h ijc:l..._- [Browse...

| Browse...

|+ Select configuration using 'C/C++ Application’
Disable auto build

Configure Workspace Seftings..,

i SF)H i h Select oth Apply Revert

Now with the Debugger Tab selected change the GDB Command: and Port Number as shown below. Check other
settings to ensure they are the same.

= —+l,

TEX|E - Name: blink Default

type filter text [Main [%% Debugger . [+ Startup E Source| | Commaon
[T] C/C++ Application GDE Setup

[E] C/C++ Attach to Application

GDB C d:
[t] C/C++ Postmortern Debugger ermman

[T] C/T++ Remote Application arm-none-eabi-gdb ’Brows-e...] ’Variables...]
[] GDB Hardware Debugging
[] blink Default Remote Target
> Launch Group Use remote target
JTAG Device: | Generic TCP/IP -,

Host name or IP address: localhost

Port number: 2331

[7] Force thread list update on suspend

Now with the Startup Tab Selected
1. Enter the following in the Initialization Commands section as shown below. Keep in mind the device may
differ.
mon speed 4000
mon endian little
mon flash download = 1
mon flash device = EFM32GG990F1024
mon reset 1

[Z] Main | %% Debugger | [Startup E . Source| 5] Common
Initialization Commands
Reset and Delay (seconds): 3
Halt

mon speed 4000

mon endian little

maon flash download = 1

man flash device = EFMM32GG990F1024

2. Check the Set breakpoint at: box and type main in the window as shown below

Runtime Options

[Set program counter at (hex):

Set breakpoint at: main
[] Resurne

Run Commands

Now with the Common tab selected
1. Check the Debug box as shown below

0 E x | B3 Mame: blink
type filter text Main | %% Debugger | (= Startup | £+ Source | =] Common
[&] C/C++ Application Save as

[£] C/C++ Attach to Application @ Local file
[£] C/C++ Postmortem Debugg

[&] C/C++ Remote Application (© Shared file: Ablink
[] coe Hardware Debugging Display in favorites menu Encodin
& blink play g
in _ . .
= Launch Group %5 Debug @ Default - inherited (Cp1252)

(©) Other | ISO-8859-1

Finally click the Apply button and Close button.

Now we are ready to download the compiled project to the STK and Debug!!

KEEP IN MIND YOU NEED TO HAVE THE SEGGER J-LINK GDB SERVER RUNNING TO FLASH AND DEBUG!!

Before we do so let’s change the Console Window to output the GDB Debugger information. To do so simply find the
Console Window Icon on the bottom right hand side of the Eclipse output pane and select [GDB Hardware
Debugginglarm-none-eabi-gdb as shown below.

, | B 6B | & B [EE
[E 1CDT Global Build Cansole
[E 2 CDT Build Console [blink]
[t] 3 blink [GDB Hardware Debugging] arm-none-eabi-gdb (11/27/12 I:U%M]
[t] 4blink [GDB Hardware Debugging] C:\Users\Frank Roberts\AppData\Roaminghenergymicro\kits\EFM32GG_STK3700" examples\blink\ codesourcery\exe\blink.out (11/27/12 1:00 PM)

8- ri- =0

To Download/Debug click on the Drop-Down menu next to the Green Beetle in the middle of the toolbar and select
Blink as shown below.

ﬁ; - ﬁ - % - @ [;5; Q:' -
[c] lﬂnk
Debug As »
Debug Cenfigurations...

Organize Favorites...

The first time you do this you will see the window below, click YES to view the Debug Perspective. You also may want to
check the box ‘Remember my decision’ so you don’t see this window every time you debug.

= Confirm Perspective Switch | & |

% This kind of launch is configured to open the Debug perspective when it suspends.

This Debug perspective is designed to support application debugging. It
incorporates views for displaying the debug stack, vaniables and breakpeoint
*# management.

Do you want to open this perspective now?

[Rerember my decision

You should now see the following in the Console Window...
Notice that it shows it set a Temporary Breakpoint at line 75 in blink.c which is the first instruction in Main() which is
exactly what we told the debugger to do in the Debug Configurations.

El Console i1 ¥ Tasks| 1 Problems| (3 Executables| [} Memory

blink [GDE Hardware Debugging] arm-nene-eabi-gdb (11/27/12 1:00 PM)

MaT SPEen Saed

mon endian little

mon flash download = 1

mon flash device = EFM32GG99@F1824

load "C:\\Users\\Frank Roberts\\AppData\\Roaming\\energymicro\\kits\\EFM32G6G_STK37@@\\examplesi\blink\\codesourcery\exe\\blink.out™
Loading section .text, size @x1548 lma @x@

Loading section .eh_frame, size @x4 lma @x154@

Loading section .redata, size @xdc lma @x1544

Loading section .data, size @x1@ lma @x1628

Start address @xdc, load size 5688

Transfer rate: 2773 KB/sec, 1428 bytes/write.

tbreak main

Temporary breakpeint 1 at @xl4e6: file ../blink.c, line 75.

Fl

You will also see that the Segger J-Link GDB Server GUI has changed to reflect that it has downloaded the project and is
connected to the EFM32. Keep in mind specific EFM32 may differ depending on what STK/DK you have.

5! SEGGER J-Link GDEB Server \4.54a = 25
File Help
v Localhozt only
GDE |E0nnected to 127.0.0.1 Initial 5'%D zpeed |5 kHz *| [¥ Stapontop
) v Show log window
J-Link |E0nnected Current S%WD speed |4000 kHz ™ Generate lngfile
CPU [EFM32GG30F1 024, Halted 330V Litle endian v | Coche reads
[“erify download
v Init regs on start
Log output: Clear lng
Downloading 4 bytes @ addres= 0=xz00001540 -

Downloading 220 bytes @ address 0x00001544
Downloading 16 bytes @ address 0x00001620

Writing register (PC = 0x000000d4c)

Fead 4 bytes @ addres= 0=x000000DC (Data = O0=47804801)
Fead 2 bytes @ addre== 0=x00001466 (Data = 0=F7FF)

GDE closed TCP<IF connecticon

Clozing remote szocket

Waiting for GDE connection. Connected to 127 .0.0.1
Feading all registers

Fead 4 bytes @ addre=ss 0=000000DC (Data = O0x47804301)
JTAG =peed =et to 4000 kHz

Target endiane== =et to "little endian"

Flash download enabled

Selecting device: EFHM3IZGGE990F1024

Reszet=z the core only, not peripherals.

Downloading 5440 bytes @ addre=ss 0xz00000000
Downloading 4 bytes @ addres= 0=xz00001540

Downloading 220 bytes @ address 0x00001544
Downloading 16 bytes @ address 0x00001620

Fead 4 bytes @ addres= 0xz000000DC (Data = O0x47804201%
RFead 2 bytes @ addres= 0x00001466 (Data = 0=F7FF)

m

11 KB downloaded 1 JTAG device

You have successfully installed Eclipse, Codesourcery, Segger J-LINK GDB Server, and can now compile download and
Debug the application. This can serve as a starting point for your own custom projects.

Read Further for more Eclipse Tips...

Debugging Functionality:
To set a breakpoint simply double click on a source code line in the Eclipse editor. Other functionality is shown below.

Look for the buttons shown in the figure below in the debug tab.

Figure 2.7. Debug button

S O =, =. ‘ = =

O G
Resume (F8) Step Into (F5) Instruction Stepping Mode

Suspend Step Over (F6)
Terminate (Ctrl4+F2)| |Step Return (F7)

Using EmbSys Register View: The EmbSys register/SFR viewer is very useful when working with the EFM32 peripherals as
it allows you to see inside the specific peripheral registers. The register viewer also contains documentation on
peripheral registers and their bitfields(as tooltips).

Open Preferences in Eclipse’s Window pulldown menu and select the correct device by going to C/C++->Debug->EmbSys
Register View as shown below.

= Preferences I — | 2 |
type filter text EmbSys Register View Provw
g:girjl : A Periperal Register View for embedded system
Appearance Architecture: Chip description
::I;:tools [COf’EEX'm3 'l Energy Micro Giant/Leopard Gecko, ARM Cortex-M3 CPU
platform,
Code Analysis Vendor: High Performance 32-bit processor @ up to 48 MHz,
Code Syle " [Enegyicre S| Sakeip Interrupt Contraller
Debug ; Use support. '
Breakpoint Actions Chip: Flexible Energy Management System.
Debugger Types [EFM32GGI9OFL0H |
Disassembly Board:
Emb5ys Register View i
Behavior et
GDB MI
Source Lookup Path
Traditional Memory Rendering
Editor
File Types =
Indexer =

@j [oK] l Cancel

Also for Behavior selected check the Binary column Bit Buttons immediate effect and select the Max number of elements.

2 s

type filter text Behavior
Sjgirfl l how the view should behave
Appearance Binary column Bit Buttons immediate effect
Autotools Number of elements shown in drop down List (Interpretations in Hex Column)
Build 20 -
Code Analysis
Code Style =
Debug
Breakpoint Actions
Debugger Types
Disassembly

EmbSys Register View T
Behavior
GDE MI

Srnirre | anlon Dath

To open a register viewer in the Debug view, select Show View->Other... and then under the Debug node select EmbSys
Registers.

To use the EmbSys view simply double click on a Register to view its contents as shown below.

= e e eemmeemmmman o

' PD_DOUTCLR - write only - write only 000000000 WO (40006080 Port Data Out Clear Register
> PD_DOUTTGL - write only - write only (00000000 WO (40006084 Port Data Out Toggle Register
> PD_DIN 000000000 RO 0:40006088 Port Data In Register
> PD_PINLOCKN 0:0000FFFF RW (:4000608C Port Unlocked Pins Register
> PE_CTRL 000000000 RW (40006090 Port Control Register
> PE_MODEL 000000000 RW (x40006094 Port Pin Mode Low Register
> PE_MODEH 000000000 RW (40006098 Port Pin Mode High Register
a PE_DOUT 0x0000000C 00000000000000000000000000001100 000000000 RW (:4000609C Port Data Out Register
[=] DOUT (bits 0-15) 0x000C 0000000000001100 =/ Data Out
s PE_DOUTSET - write only - -----------—- write only ------------- (00000000 WO (eed00060A0 Port Data Out Set Register
> PE_DOUTCLR - write only - ------------- write only ------------- (00000000 WO (edD0080A4 Port Data Out Clear Register
[» PE_DOUTTGL - write only - ------------- write only ------------- 000000000 WO (eedD0080AS Port Data Out Toggle Register
> PE_DIM 000000000 RO 0:x400060AC Port Data In Register
> PE_PINLOCKM 0:0000FFFF RW 0x400060B0 Port Unlocked Pins Register
> PF_CTRL 000000000 RW (x400060B4 Port Control Register
> PF_MODEL 000000000 RW (x400060B& Port Pin Mode Low Register

Summary: There are numerous other useful features of Eclipse that can be explored

