# SIOC 202A – FUNDAMENTALS OF WAVE PHYSICS

### Welcome to the Course

#### **Course Information**

| Course Description | This course covers topics in surface waves and acoustic waves. |  |
|--------------------|----------------------------------------------------------------|--|
| Credits            | 4 units/credit hours of lecture                                |  |
| Instructor         | nstructor Xuanting Hao and Ying-Tsong Lin                      |  |

Prerequisites: familiarity with undergraduate-level fluid mechanics, calculus, ODE and PDE.

### Classes

In-person lectures: MW 9:00am-10:20am Location: Spiess Hall 330

Office hours:

Hao (week 1-5): M 8:00am-9:00am W 8:00am-9:00am, 10:30am-11:30am Location: Keck

Center 367 Email: x3hao@ucsd.edu

Lin (week 6-10): M 11:00am-1:00pm, T 11:00am-1:00pm and Th 11:00am-1:00pm, Location:

Spiess 460 Email: ytlin@ucsd.edu (reservation required)

## **Asynchronous (Online) Course Elements:**

UC San Diego's Learning Management System: <a href="https://canvas.ucsd.edu">https://canvas.ucsd.edu</a>

Login: UC San Diego Active Directory credentials Purpose: Assignment submissions, lecture slides

### **Course Materials and Tools**

## **Text/Readings/Other Material**

**Textbooks** 

Surface waves:

- Rick Salmon, Introduction to Ocean Waves (lecture notes, to download: http://www-pord.ucsd.edu/rsalmon/)
- Young, I. R. Wind Generated Ocean Waves. Amsterdam; New York: Elsevier, 1999. https://doi.org/10.1016/S1571-9952(99)80001-4. (available online from UCSD library)
- Dean, R. G., and R. A. Dalrymple. Water Wave Mechanics for Engineers and Scientists. Singapore; Teaneck, NJ: World Scientific, 1991. (available from UCSD library)

Acoustic waves: (freely accessible through UCSD VPN)

 Herman Medwin and Clarence S. Clay, Fundamentals of Acoustical Oceanography. <a href="https://www.sciencedirect.com/book/9780124875708/fundamentals-of-acoustical-oceanography">https://www.sciencedirect.com/book/9780124875708/fundamentals-of-acoustical-oceanography</a>



- Finn B. Jensen, William A. Kuperman, Michael B. Porter, Henrik Schmidt, Computational Ocean Acoustics. <a href="https://link.springer.com/book/10.1007/978-1-4419-8678-8">https://link.springer.com/book/10.1007/978-1-4419-8678-8</a>
- L. M. Brekhovskikh, Yu. P. Lysanov, Fundamentals of Ocean Acoustics. <a href="https://link.springer.com/book/10.1007/b97388">https://link.springer.com/book/10.1007/b97388</a>

### Recommended reading:

- Chapter 7 on potential flow in Fluid Mechanics, 6th edition, P. K. Kundu, I. M. Cohen, D. R. Dowling, Academic Press, 2016. (available online from UCSD library)
- Discovery of Sound in the Sea <a href="https://dosits.org/">https://dosits.org/</a>
- Ocean Acoustics Library OALIB <a href="https://oalib-acoustics.org/">https://oalib-acoustics.org/</a>

# **Assignments, Projects, and Grading**

### **Summary of Grade Criteria**

| Assignment               | Weight | Due Date                                |
|--------------------------|--------|-----------------------------------------|
| Required assignments (8) | 75%    | 11:59 pm weekly (submit online)         |
| Final exam               | 25%    | 03/19/2025 W 8:00a-10:59a Location: TBD |
|                          |        |                                         |

## **Course Schedule (subject to change)**

| Week | Title / Topic                                                                           | Activities, Assessments, and Due dates |
|------|-----------------------------------------------------------------------------------------|----------------------------------------|
| 1    | <ul><li> Kinematics of monochromatic waves</li><li> Two waves</li></ul>                 | Homework due on 1/15                   |
| 2    | <ul><li> Wave statistics (multiple waves)</li><li> Hydrodynamics (deep water)</li></ul> | Homework due on 1/22                   |
| 3    | <ul><li> Hydrodynamics (finite depth)</li><li> Shoaling waves</li></ul>                 | Homework due on 1/29                   |



| 4  | <ul><li>Shallow water equation</li><li>Ship waves</li></ul>                                                                                                                                                                                      | Homework due on 2/5  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 5  | Wave forces                                                                                                                                                                                                                                      |                      |
| 6  | <ul> <li>Introduction of Ocean Acoustics</li> <li>Linear Acoustic Wave Equation and<br/>Fundamental Solutions</li> </ul>                                                                                                                         | Homework due on 2/19 |
| 7  | <ul> <li>Wavenumber Vectors, Wave<br/>Reflection and Wave Refraction</li> <li>Ocean Acoustic Deep Water<br/>Waveguide</li> </ul>                                                                                                                 | Homework due on 2/26 |
| 8  | <ul> <li>Ocean Acoustic Deep Water<br/>Waveguide (cont.)</li> <li>Ocean Acoustic Shallow Water<br/>Waveguide</li> </ul>                                                                                                                          | Homework due on 3/5  |
| 9  | Introduction of acoustic scattering theory     Huygens' Principle     Helmholtz-Kirchhoff Methods                                                                                                                                                | Homework due on 3/12 |
| 10 | <ul> <li>SONAR Equations</li> <li>Applications of Ocean Environmental<br/>Acoustics         <ul> <li>Marine Mammal Acoustics</li> <li>Seabed and Sediment Acoustics</li> <li>Ambient Sound and Soundscape<br/>Informatics</li> </ul> </li> </ul> |                      |

# **Campus and Course Policies**

We expect students to attend every lecture. UC San Diego permits absence for participation in religious observances; see <u>Academic Regulations & Policies (ucsd.edu)</u>. UC San Diego expects all students will adhere to its standards of academic integrity; see <u>UCSD Policy on Integrity of Scholarship</u>.

### Grading policy:

#### 1. Late submissions:

Late submissions are allowed, but with limitations. Late submissions will be accepted within one day (24 hours) following the original assignment deadline and will be capped at 50% of the total grade. Therefore, it is strongly encouraged to submit assignments on time to maximize the potential for a higher grade.

**2. Extensions:** Extensions of assignment deadlines will only be granted in exceptional circumstances. Students should contact their instructor as soon as possible if they believe they have a valid reason for an extension.

#### **Accommodations for Students with Disabilities**

If a student foresees the need for accommodations, they should promptly schedule a meeting with the professor. Before accommodations can be implemented, students are required to furnish an Authorization for Accommodation (AFA) letter from the UCSD Office for Students with Disabilities (OSD). It's important to note that accommodations cannot be applied in hindsight, such as after an exam has taken place.

### **Campus Policies**

- UC San Diego Principles of Community
- UC San Diego Policy on Integrity of Scholarship
- Religious Accommodation
- Nondiscrimination and Harassment
- UC San Diego Student Conduct Code