Before and after at landslide site. Left photo: Søren Rysgaard. Right photo: Danish Army

Climate Change-Triggered Landslide Unleashes a 650-Foot Mega-Tsunami

Wave created a seismic signal that lasted for nine days

In September 2023, scientists around the world detected a mysterious seismic signal that lasted for nine straight days. An international team of scientists, including seismologists Alice Gabriel and Carl Ebeling of UC San Diego’s Scripps Institution of Oceanography came together to solve the mystery. 

A new study published today in Science provides the stunning solution: In an East Greenland fjord, a mountaintop collapsed into the sea and triggered a mega-tsunami about 200 meters (650 feet) tall. The giant wave rocked back and forth inside the narrow fjord for nine days, generating the seismic waves that reverberated through Earth’s crust, baffling scientists around the world. This rhythmic sloshing is a phenomenon known as a seiche. Fortunately, no people were hurt, but the waves destroyed some $200,000 in infrastructure at an unoccupied research station on Ella Island.

“When we set out on this scientific adventure, everybody was puzzled and no one had the faintest idea what caused this signal,” said Kristian Svennevig, a geologist at the Geological Survey of Denmark and Greenland (GEUS) and the study’s lead author. “All we knew was that it was somehow associated with the landslide. We only managed to solve this enigma through a huge interdisciplinary and international effort.”

Climate change set the stage for the landslide by melting the glacier at the base of the mountain, destabilizing the more than 25 million cubic meters (33 million cubic yards) of rock and ice – enough to fill 10,000 Olympic-sized swimming pools – that ultimately crashed into the sea. As climate change continues to melt Earth’s polar regions it could lead to an increase in large, destructive landslides such as this one.

“Climate change is shifting what is typical on Earth, and it can set unusual events into motion,” said Gabriel, whose work on this study was supported by the European Research Council, Horizon Europe, the National Science Foundation (NSF) and NASA.

When seismic monitoring networks first detected this signal in September 2023, it was puzzling for two main reasons. First, the signal looked nothing like the busy squiggle that earthquakes produce on seismographs. Instead, it oscillated with a 92-second-interval between its peaks, too slow for humans to perceive. Second, the signal stayed strong for days on end, where more common seismic events weaken more rapidly.

The global community of Earth scientists started buzzing with online discussion of what could be causing the strange seismic waves. The discussion turned up reports of a huge landslide in a remote Greenland fjord that occurred on Sept. 16, around the time the seismic signal was first detected.

To figure out if and how these two phenomena might be connected, the team, led by Kristian Svennevig of the Geological Survey of Denmark and Greenland, combined seismic recordings from around the world, field measurements, satellite imagery and computer simulations to reconstruct the extraordinary events.

The team, comprised of 68 scientists from 41 research institutions, analyzed satellite and on-the-ground imagery to document the enormous volume of rock and ice in the landslide that triggered the tsunami. They also analyzed the seismic waves to model the dynamics and trajectory of the rock-ice avalanche as it moved down the glacial gully and into the fjord.

To understand the tsunami and resulting seiche, the researchers used supercomputers to create high-resolution simulations of the events. 

“It was a big challenge to do an accurate computer simulation of such a long-lasting, sloshing tsunami,” said Gabriel. 

Ultimately, these simulations were able to closely match the real-world tsunami’s height as well as the long-lasting seiche’s slow oscillations. 

By integrating these diverse data sources, the researchers determined that the nine-day seismic signal was caused by the massive landslide and resulting seiche within Greenland’s Dickson Fjord.

“It was exciting to be working on such a puzzling problem with an interdisciplinary and international team of scientists,” said Robert Anthony, a geophysicist with the United States Geological Survey’s Earthquake Hazards program and co-author of the study. “Ultimately, it took a plethora of geophysical observations and numerical modeling from researchers across many countries to put the puzzle together and get a complete picture of what had occurred.”

The study’s findings demonstrate the complex, cascading hazards posed by climate change in polar regions. While no people were in the area when the landslide and mega-tsunami occurred, the fjord is close to a route commonly used by cruise ships, highlighting the need to monitor polar regions as climate change accelerates. For example, a landslide in western Greenland’s Karrat Fjord in 2017 triggered a tsunami that flooded the village of Nuugaatsiaq, destroying 11 houses and killing four people.

Gabriel said the results could also inspire researchers to comb back through the seismic record to look for similar events now that scientists know what to look for. Finding more seiches could help more clearly define the conditions that give rise to the phenomenon.

“This shows there is stuff out there that we still don’t understand and haven’t seen before,” said Ebeling, who co-authored the study with support from NSF and helped manage a network of seismic sensors that detected the seiche’s vibrations. “The essence of science is trying to answer a question we don’t know the answer to – that’s why this was so exciting to work on.” 

About Scripps Oceanography

Scripps Institution of Oceanography at the University of California San Diego is one of the world’s most important centers for global earth science research and education. In its second century of discovery, Scripps scientists work to understand and protect the planet, and investigate our oceans, Earth, and atmosphere to find solutions to our greatest environmental challenges. Scripps offers unparalleled education and training for the next generation of scientific and environmental leaders through its undergraduate, master’s and doctoral programs. The institution also operates a fleet of four oceanographic research vessels, and is home to Birch Aquarium at Scripps, the public exploration center that welcomes 500,000 visitors each year.

About UC San Diego

At the University of California San Diego, we embrace a culture of exploration and experimentation. Established in 1960, UC San Diego has been shaped by exceptional scholars who aren’t afraid to look deeper, challenge expectations and redefine conventional wisdom. As one of the top 15 research universities in the world, we are driving innovation and change to advance society, propel economic growth and make our world a better place. Learn more at ucsd.edu.

Sign Up For
Explorations Now

explorations now is the free award-winning digital science magazine from Scripps Institution of Oceanography. Join subscribers from around the world and keep up on our cutting-edge research.