Louise Rousselet

The ‘Grand Tour’ Atlantic Ocean Water Takes Around the World

An analysis of “big data” by Scripps oceanographers traces where water goes when it leaves the Atlantic ocean basin

Scientists at Scripps Institution of Oceanography at UC San Diego and colleagues have created an estimate of the journey water makes around the world ocean basins using information from more than 1 billion points of data collected over 25 years.

The oceanographers found that random parcels of water will take hundreds or sometimes thousands of years to complete an epic journey back to their points of origin. They also find that a fundamental and much-publicized component of the circulation in the Atlantic Ocean could be more vulnerable to disruption than previously understood.

Scripps Oceanography postdoctoral researcher Louise Rousselet, oceanographer Paola Cessi, and research scientist Gael Forget from the Massachusetts Institute of Technology report their results in the May 21 issue of the journal Science Advances. The National Science Foundation (NSF) and NASA funded the research.

Rousselet and Cessi said the research is the first to follow trajectories of water supported by such a large amount of real-world data while using a computer simulation known as Estimating the Circulation and Climate of the Ocean (ECCO). ECCO is an ocean model that incorporates more than 1 billion data collected from satellites, robotic free-drifting floats in the global Argo network, and other sources. ECCO  merges the data into a global simulation of the oceans much like weather forecasts do for the atmosphere. Water parcels followed on their journey through the ocean record physical properties, such as temperature and salinity. Following moving tagged parcels is a complement to describing ocean properties at fixed locations, such as the temperature at the end of the Scripps Pier.

Positions of three parcels along typical trajectories from three different groups. The color of the symbols denotes potential density. The top left inset shows potential density along the trajectory as a function of time. The top right legend indicates the time elapsed from the initial position for each parcel. Notice that the frame rate is much faster for the slow parcels that sample the abyssal Pacific, so as to have comparable durations of the three trajectories for all three parcels.
Trajectory of one parcel taking the “grand tour” of the world’s ocean. Its last position - when the parcel comes back home in the Atlantic - is denoted by a magenta star. The starting and finishing line is shown by a white dashed line. This parcel takes five full circuits around Antarctica after leaving the Pacific Ocean. The parcel starts its journey 3,540 meters (11,610 feet) depth and comes back 1640 years later at 250 meters (820 feet) deep. The black and white shading shows the depth of the seafloor.

In their simulation, Rousselet and colleagues  followed the paths of water that originates in what oceanographers call the lower branch of the Atlantic Meridional Overturning Circulation (AMOC), a major flow of Atlantic water that moderates temperatures between the equator and the poles. At one point, water in this circulation becomes heavier in the North Atlantic and sinks. The rising water required to balance this sinking water sets in motion a cold, dense flow in the deep ocean back toward the equator. The circulation stabilizes weather in Europe and in other areas around the Atlantic.

The simulation followed 65,000 parcels of water like runners at a starting gate in the Atlantic just south of the equator. They then used ECCO to see where the water particles went over a recent 25-year period. They then looped data on the velocity of the water parcels to track where they would be expected to go next over another 25 years, then another 25, and so on for millennia.

The researchers found that about one-third of the parcels left the Atlantic, then took a trip around the Pacific, Indian, and Southern oceans and needed about 300 years to return home. About 20 percent made roughly the same journey but traveled to greater depths and also made a detour into the Weddell Sea off Antarctica. Those parcels needed 700 years to get back to the Atlantic. The largest number, nearly half, typically needed 2,800 years to get back, diving for roughly 1,000 years into the abyssal Pacific Ocean. Those, Cessi said, took the “grand tour” of the world’s oceans, visiting nearly every basin at varying depths before returning.

Animations show positions of three water parcels along typical trajectories. Symbol colors denote potential density. The top left inset shows potential density along the trajectory as a function of time. Note that the frame rate is much faster for the slow parcel that samples the abyssal Pacific.

In all three cases, the properties of the water parcels changed throughout the journey and those changes influenced their speed. Water that is salty and cold is denser than fresher warmer water. The interplay of water with different densities in the oceans, together with the surface winds, is what determines the ocean circulation as the dense water sinks and light water rises, following labyrinthine pathways.

The simulated routes enabled the researchers to record what the temperature and salinity was at various waypoints on the trip. From that they concluded that the AMOC serves as a conduit through which salt is pumped into the Atlantic Ocean. 

If that circulation is a bringer of salinity, that could mean recent climate change-induced dynamics in the North Atlantic Ocean could destabilize the AMOC. Several researchers have observed that the North Atlantic Ocean is becoming fresher as glacial melt in Greenland accelerates and as relatively fresh water from the Arctic Ocean spills into the Atlantic. This means that fresh water incursions could disrupt the AMOC, which could trigger extreme weather changes, not only around the Atlantic, but eventually around the world.



About Scripps Oceanography

Scripps Institution of Oceanography at the University of California San Diego is one of the world’s most important centers for global earth science research and education. In its second century of discovery, Scripps scientists work to understand and protect the planet, and investigate our oceans, Earth, and atmosphere to find solutions to our greatest environmental challenges. Scripps offers unparalleled education and training for the next generation of scientific and environmental leaders through its undergraduate, master’s and doctoral programs. The institution also operates a fleet of four oceanographic research vessels, and is home to Birch Aquarium at Scripps, the public exploration center that welcomes 500,000 visitors each year.

About UC San Diego

At the University of California San Diego, we embrace a culture of exploration and experimentation. Established in 1960, UC San Diego has been shaped by exceptional scholars who aren’t afraid to look deeper, challenge expectations and redefine conventional wisdom. As one of the top 15 research universities in the world, we are driving innovation and change to advance society, propel economic growth and make our world a better place. Learn more at ucsd.edu.

Sign Up For
Explorations Now

explorations now is the free award-winning digital science magazine from Scripps Institution of Oceanography. Join subscribers from around the world and keep up on our cutting-edge research.